K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

ê kẻ đc hình chưa

 

12 tháng 12 2016

Hướng giải: 

a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) 

b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a

kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)

c) cm BFKC là hình chữ nhật 

(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song

- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật) 

Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG) 

d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)

Có chung điểm I => HI // EI (// OC) hay HK // EI 

24 tháng 10 2018

Cho hình bình hành ABCD, tia phân giác của góc D và góc B cắt AB và CD tại M và N

a, chứng minh góc AMD = góc ABN

b, Chứng minh tứ giác DMBN là hình bình hành

c, tia phân giác của góc A cắt DM và BN tại H và G, tia phân giác của góc C cắt DM và BN tại E và F Chứng minh tứ giác HEFG là hình chữ nhật

a: Xét tứ giác AECF có

AF//CE

AF=CE

Do đó: AECF là hình bình hành

b: Xét ΔDHC có

E là trung điểm của DC

EI//HC

Do đó: I là trung điểm của DH

=>DI=IH(1)

Xét ΔAIB có

F là trung điểm của AB

FH//AI

Do đó: H là trung điểm của BI

=>BH=HI(2)

Từ (1) và (2) suy ra DI=IH=BH

29 tháng 4 2020

THCFSTXBRHYYYYYYYYYYYYYYYYYY

9 tháng 2 2019

Hỏi đáp Toán

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7)

Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

10 tháng 2 2019

thank youkhocroi

1 tháng 7 2016

trả lời hộ mk vs nha

1 tháng 7 2016

 mình không biết cái đề nó có vấn đề gì ko chứ ko thề nào nó là hbh dc . nếu nó hình bh có ak vuông de nó sẽ laf hình thôi nhưng ko thề nào dc vì ao khong = ok lấy đâu ra hbh

a) ta có: ABCD là hình bình hành => AB // CD và AB = CD

mà E là trung điểm của AB ; F là trung điểm của CD

AE = EB = CF = DF (1)

vì AB // CD => EB // DF (2)

từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)

b) hình bình hành ABCD có:

AC cắt BD tại trung điểm của mỗi đường (1)

xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy

c) gọi O là giao điểm của AC ; BD ; EF

xét \(\Delta EOM\) và \(\Delta NOF\) có:

góc EOM = góc NOF (đối đỉnh)

OE = OF 

góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF

ta có: ME // NF

=> tứ giác EMFN là hbh (đccm)

chúc bạn học tốt!! ^^

564576767568768769535737476575678567856856876876697634524545346456457645765756567563

1 tháng 10 2017

tu giac emfn