Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}+\frac{c}{c}=\frac{b}{d}+\frac{d}{d}\)
\(\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\)
A B C D H E
a) Xét ΔABH vÀ ΔDBH có:
BH:cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> ΔABH=ΔDBH(c.g.c)
b)Xét ΔAHC và ΔDHC có:
AH=DH(gt)
\(\widehat{AHC}=\widehat{DHC}=90^o\)
HC: cạnh chung
=> ΔAHC=ΔDHC(c.g.c)
=> AC=CD
c) Xét ΔBHD và ΔEHA có:
\(\widehat{BHD}=\widehat{EHA}=90^o\)
DH=AH(gt)
\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)
=> ΔBHD=ΔEHA(g.c.g)
=> BH=EH
=>H là trung điểm của BE
Ta có: \(\widehat{EMN}+\widehat{aMb}=180^o\) (kề bù)
\(\Rightarrow120^o+\widehat{aMb}=180^o\)
\(\Rightarrow\widehat{aMb}=180^o-120^o=60^o\)
Mà: \(\widehat{MNF}=60^o\)
Và: \(\widehat{aMb}\) và \(\widehat{MNF}\) so le trong
Vậy: a//b
Ta lại có: \(\begin{cases}b\perp c\\a\text{//}b\end{cases}\) \(\Rightarrow a\perp c\left(\text{đ}pcm\right)\)
Ta có:
góc M + góc N = 120o + 60o
= 180o
Mà góc M và góc N là 2 góc trong cùng phía
=> a // b
Mà \(b\perp c\) tại F => \(a\perp c\) (đpcm)
a/ Xét tam giác OAC và tam giác OBD có
O : góc chung
OA = OB (GT)
OC = OD (GT)
=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )
=>AC = BD (2 cạnh tương ứng)
b/ Xét tam giác IAD và IBC có
-góc C = góc D (vì tam giác OAC=tam giác OBD)
-A = B = 900
-AI = BI (vì AC = BD)
=> tam giác IAD = tam giác IBC (góc cạnh góc)
=>AD=BC (2 cạnh tương ứng)
c/ Xét tam giác OAI và tam giác OBI có
-OA = OB (GT)
-góc AIO = góc OIB
-A = B = 900
=> tam giác OAI = tam giác OBI (cạnh góc cạnh)
=> góc AOI = góc IOB (2 góc tương ứng)
Vậy OI là phân giác của góc O
d/ Gọi OI và AB cắt nhau tại M
Xét tam giác OAM và tam giác OBM có
-AOM = BOM
-OA = OB
-OM: cạnh chung
=> tam giác OAM = tam giác OBM (cạnh góc cạnh)
=> AMO = BMO
Ta có: AMO + BMO = 1800 (kề bù)
Mà AMO = BMO
=> AMO = BMO = 1/2 1800 = 900
Vậy OI là đường trung trực của đoạn AB
e/ Gọi phân giác của góc O cắt CD tại N
Xét tam giác INC = tam giác IND có
IN: cạnh chung
DIN = CIN
ID = IC
=> tam giác INC = tam giác IND (cạnh góc cạnh)
=> INC = IND
Ta có; IND + INC =1800 (kề bù)
Mà INC = IND
=> INC =IND = 1/2 1800 = 900
=> IN là trung trực của CD
Ta có: IN là trung trực của CD
OI là trung trực của AB
=> AB//CD
Bài 1:
a: XétΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
A B D C 1 2 1 2 H
a) Vì \(\hept{\begin{cases}AB=CD\\BC=AD\\AC\text{ chung}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\widehat{B}=\widehat{D}\\\widehat{A_1}=\widehat{C_2}\end{cases}}\)mà \(\hept{\begin{cases}\widehat{B}+\widehat{A_1}+\widehat{C_1}=180^o\\\widehat{D}+\widehat{A_2}+\widehat{C_2}=180^o\end{cases}}\)( định lý tổng 3 góc trong 1 tam giác )
\(\Rightarrow\widehat{C_1}=\widehat{A_2}\)mà \(\widehat{C_1}\text{ và }\widehat{A_2}\)là 2 góc so lo trong
=> AB // CD
b) Dề sai ạ !!!
c) Vì \(\hept{\begin{cases}AB//CD\left(\text{ phần a}\right)\\AH⊥CD\end{cases}}\Rightarrow AH⊥AB\)