Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
hay DB=DC
c: Xét ΔKDC có \(\widehat{KDC}=\widehat{KCD}\left(=\widehat{B}\right)\)
nên ΔKDC cân tại K
b a c h e d
a) có tam giác abc cân tại a mà ah là phân giác của bac => ah cũng là đường trung truyến => bh=hc=bc/2=8/2=4cm
xét tam giác vuông ahc có \(AC^2=AH^2+HC^2=3^2+4^2=9+15=25\Rightarrow AC=5CM\)
B) xét tam giác vuông aeh và tam giác vuông adh
có ah chung ; aeh= dah ( vì tam giác abc cân mà ah là đường cao => ah là phân giác )
=> tam giác vuông aeh = tam giác vuông adh ( trường hợp cạnh huyền - góc nhọn ) => ae =ad => dpcm
c) có ae = ad ( câu a ) => tam giác aed cân => aed= aed= \(\frac{180^0-A}{2}\) (1)
có tam giác abc cân a ( đề bài ) => abc = acb = \(\frac{180^o-A}{2}\)(2)
từ (1) và (2) => aed = abc = ade=acb hay aed=abc mà 2 góc này ở vị trí so le trong
=. ed//bc
a: \(BC=\sqrt{34}\left(cm\right)\)
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có
CA chung
\(\widehat{KCA}=\widehat{HCA}\)
Do đó: ΔCKA=ΔCHA
Suy ra: CK=CH
d: Xét ΔCBD có CK/CD=CH/CB
nên HK//BD