Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DE⊥AC
AB⊥AC
Do đó: DE//AB
b: AC=8cm
=>CE=8-2=6(cm)
Xét ΔCAB có ED//AB
nên CD/CB=CE/CA
=>CD/10=6/8=3/4
=>CD=7,5(cm)
=>BD=2,5(cm)
A B C D
Vì ABCD là hình thang cân nên \(AD=BC,\widehat{ADC}=\widehat{BCD}\)
Xét 2 tam giác ADC và BCD có: DC chung, \(\widehat{ADC}=\widehat{BCD}\), AD=BC
\(\Rightarrow\Delta ADC=\Delta BCD\left(c.g.c\right)\Rightarrow\widehat{DAC}=\widehat{CBD}=90^0\Rightarrow AC\perp AD\)
A B C D E
Giải: a) Xét t/giác ABC vuông tại A (Áp dụng định lí Pi-ta-go)
Ta có: BC2 = AC2 + AB2 = 202 + 152 = 400 + 225 = 625
=> BC = 25
Vậy BC = 25 cm
b) Xét t/giác ABD có góc A = 900 => góc ABD + góc BDA = 900 (t/c của 1 t/giác vuông) (1)
Xét t/giác EDC có góc E = 900 => góc DCE + góc CDE = 900 (t/c của 1 t/giác vuông) (2)
Mà góc BDA = góc CDE (đối đỉnh) (3)
Từ (1) ; (2); (3) suy ra góc ABD = góc ECD
c) Tự lm
hình vẽ??