Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ O vẽ Oz // Mx.
Ta có : Oz // Mx
= > xMO = MOz (so le trong)
Ta lại có : Oz // Mx
Mà Mx // Ny (giả thiết)
=> Oz // Ny (Tiên đề Ơ - clít)
= > zOn + ONy = 180 (Trong cùng phía)
zOn = 180 - ONy = 180 - 110 = 70
Có : MON = MOz + zON = 20 + 70 = 90
=> MO vuông góc với ON
Vẽ đường thẳng xy đi qua điểm O sao cho xy // a
Gọi tên các đỉnh như hình vẽ
Ta có \(\widehat{A1}=\widehat{B1}=38^0\)(vì xy//a ,so le trong)
Vì a//b mà xy//a \(\Rightarrow xy\)//b
Ta có \(\widehat{O2}+\widehat{B1}=180^0\)(vì xy//b,trong cùng phía)
Hay \(\widehat{O2}+132^0=180^0\)
\(\Rightarrow\widehat{O2}=180^0-132^0\)
Vậy \(\widehat{O2}=48^0\)
Ta có \(\widehat{O1}+\widehat{O2}=\widehat{AOB}\)
Hay \(38^0+48^0=x\)
Suy ra \(x=86^0\)
Đáp án bài 57:
Kẻ c//a qua O ⇒ c//b
Ta có: a//c ⇒ ∠O1 = ∠A1 ( So le trong)
⇒ ∠O1 = 380
b//c ⇒ ∠O2 + ∠B1 = 1800 ( Hai góc trong cùng phía)
⇒ ∠O2 = 480
Vậy x = ∠O1 + ∠O2 = 380 + 480 x = 860
Ta có : AB=AC
=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{ABC}=A\widehat{CB}=45^0\)
=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )
Ta lại có:
BD=BC
=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)
Mà \(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)
=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)
Vậy trong \(\Delta ACD\) có :
\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)