Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tổng 3 góc trong của 1 tam giác
góc A + góc B + góc C = 180 độ
góc A = 180 độ - góc B - góc C
góc A = 180 độ - 70 độ - 50 độ
góc A = 60 độ
a) Theo quan hệ giữa góc và cạnh đối diện:
Vì góc B > góc A > góc C
Suy ra cạnh AC>BC>AB
b) Xét tam giác OBD và tam giác OAC có:
OA=OB
OC=OD
góc DOB = góc COA (đối đỉnh)
=> tam giác OBD = tam giác OAC (c.g.c)
=> góc OAC = góc OBD (góc tương ứng)
mà chúng so le trong
nên AC // BD
Ta có :\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
\(\Rightarrow\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(70+50\right)=60\)
Ta lại có : \(\widehat{B}>\widehat{A}>\widehat{C}\left(70>60>50\right)\)
\(\Rightarrow AC>BC>AB\)
A B C D O
Ta có:
\(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=70^o\left(d.d\right)\\\widehat{BOC}=180^o-\widehat{AOC}=180^o-70^o=110^o\\\widehat{BOC}=\widehat{AOD}=110^o\left(d.d\right)\end{matrix}\right.\)
Vậy chọn đáp án D
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
Ta có tam giác ABC cân tại A
=> AB=AC
Mà tam giác ABD và tam giác ACE đều nên
AB=AD=BD=AC=AE=CE
Xét tam giác BDEvà tam giác CED
Góc ADB=góc AEC= 60độ
DE chung
DB=EC
tam giác BDE= tam giác CED
=> BE= DC
b, Xét tam giác BDC và tam giác CEB
BC chung
BE= DC
BD= EC
=> tam giác BDC = tam giác CEB
=> Góc DCB = EBC
BOC cân tại O
BO=OC
120o
Gọi I là điểm nằm trong đoạn thẳng cách D qua C
Góc CEF = Góc ICE=70 độ (2 góc so le trong)
Góc CAB =Góc ACI =50 độ (2 góc so le trong)
=> góc ACE= Góc ICE + góc ACI
=70 độ +50 độ
= 120 độ