K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 7 2019
a . Gọi O là tâm của đường tròn có đường kính BC.
Xét \(\Delta\)BMC vuông tại M có O là trung điểm của BC (OB=OC)
\(\Rightarrow CB=MO=OC\)
\(\Leftrightarrow M\in\left(O;OB\right)\left(1\right)\)
Xét hình thang ABCD có :
M là trung điểm của AD;O là trung điểm của BC
\(\Rightarrow MO\) là đường trung bình
\(\Leftrightarrow\)AB//MO
Mà AD\(\perp\)AB
\(\Rightarrow MO\perp AD\left(2\right)\)
Từ \(\left(1\right)\left(2\right)suyra\) AD là tiếp tuyến của đường tròn đường kính BC
a, Xét \(\bigtriangleup{EAB} \) và \(\bigtriangleup{CDE}\) , ta có :
\(\widehat{A} = \widehat{D} = 90^0\)
\(\widehat{AEB} = \widehat{ECD} \)
\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)
\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)
\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)
b, Xét \(\bigtriangleup{EAB}\) và \(\bigtriangleup{CEB}\) , ta có :
\(\widehat{A} = \widehat{CEB} = 90^0\)
Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)
\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)
\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)