Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nhé ez
xét \(\Delta ABDvà\Delta BDC\)
+) góc ABD = góc BDC (AB SS CD)
+)\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}\)
vậy tam giác abd đồng dạng bdc (c.g.c)
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4
A B C D H 15 25
a, Xét tam giác BDC và tam giác HBC ta có
^DBC = ^BHC = 900
^C _ chung
Vậy tam giác BDC ~ tam giác HBC ( g.g )
b, Vì tam giác BDC ~ tam giác HBC nên
\(\frac{BC}{HC}=\frac{DC}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow BC^2=HC.DC\)
c, Ta có : \(BC^2=HC.DC\)( cm b )
\(\Rightarrow HC=\frac{BC^2}{DC}=\frac{225}{25}=9\)cm
\(\Rightarrow HD=DC-HC=25-9=16\)cm
a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC
\(\widehat{AB}D=\widehat{BDC}\)
Do đó: ΔABD\(\sim\)ΔBDC
b: ta có: ΔABD\(\sim\)ΔBDC
nên \(\widehat{BAD}=\widehat{DBC}=90^0\)
\(BC=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)