Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông
a) Do BM là đường trung tuyến của ∆ABC (gt)
⇒ M là trung điểm của AC
Do D và B đối xứng qua M (gt)
⇒ M là trung điểm của BD
Tứ giác ABCD có:
M là trung điểm của AC (cmt)
M là trung điểm của BD (cmt)
⇒ ABCD là hình bình hành
b) Do ABCD là hình bình hành (cmt)
⇒ AB // CD
Mà DH ⊥ AB
⇒ DH ⊥ AC
c) Do ABCD là hình bình hành
⇒ AB // CD
Mà BK ⊥ CD
⇒ BK ⊥ AB
⇒ ∠KBH = 90⁰
Tứ giác BHDK có:
∠BKD = ∠KBH = ∠BHD = 90⁰
⇒ BHDK là hình chữ nhật
Mà M là trung điểm BD
⇒ M là trung điểm của HK
⇒ M, H, K thẳng hàng
Do đó chứng minh MH ⊥ MK là sai. Em xem lại đề ở câu c nhé
Gọi K là trung điểm của HD
Xét ΔHDC có
K,M lần lượt là trung điểm của HD,HC
=>KM là đường trung bình của ΔHDC
=>KM//DC và \(KM=\dfrac{DC}{2}\)
KM//DC
AB//DC
Do đó: KM//AB
KM//DC
DC\(\perp\)AD
Do đó: \(MK\perp AD\)
Xét ΔADM có
MK,DHlà đường cao
MK cắt DH tại K
Do đó: K là trực tâm của ΔADM
=>AK\(\perp\)DM
mà BM\(\perp\)DM
nên AK//BM
Xét tứ giác ABMK có
AB//MK
AK//BM
Do đó: ABMK là hình bình hành
=>MK=AB
=>CD=2AB
Gọi K là trung điểm của HD
Xét ΔHDC có
K,M lần lượt là trung điểm của HD,HC
=>KM là đường trung bình
=>KM//DC và KM=DC/2
=>KM//AB và KM=AB
=>ABMK là hình bình hành
=>AK//BM
MK//DC
DC vuông góc AD
=>MK vuông góc AD
Xét ΔADM có
MK,DH là đường cao
MK cắt DH tại K
Do đó: K là trực tâm
=>AK vuông góc DM
mà BM//AK
nên BM vuông góc DM
Cảm ơn anh.