K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Xét tg ABC vuông tại A

\(\Rightarrow AC^2+AB^2=BC^2\left(Pitago\right)\)

\(\Rightarrow BC^2=4^2+3^2\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=5\left(cm\right)\)

Vì M là trung điểm của BC

\(\Rightarrow BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\)

Xét tg CMN vuông tại M

\(\Rightarrow CM^2+MN^2=CN^2\left(Pitago\right)\)

\(\Rightarrow MN^2=4^2-2,5^2\)

\(\Rightarrow MN=\sqrt{9,75}\left(cm\right)\)

11 tháng 7 2018

sosorry

a/ Ta có hình thang ABCD với A=D=90 độ và AC vuông BD. Vì AD=3 căn 13cm và OD=9cm, ta có:

OD^2 + AD^2 = OA^2
9^2 + (3 căn 13)^2 = OA^2
81 + 9*13 = OA^2
81 + 117 = OA^2
198 = OA^2
OA = căn 198 cm

Vì AC vuông BD, ta có:

AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81

Vì AC vuông BD, ta có:

AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81

b/ Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N. Ta có:

MN = AD - BC
MN = 3 căn 13 - BC

31 tháng 10 2023

K11 ngôn lù

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

21 tháng 12 2024

 

 

a. Sỉ cằn

b.sóc lọ

 

2 tháng 10 2016

A B C H M N O a

a/ Ta có BH = a-5 = 13-5 = 8 (cm) , CH = a+5 = 13+5 = 18 (cm)

Dễ thấy AMHN là hình chữ nhật => AH = MN

Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông,ta có : \(AH^2=BH.CH=8.18=144\Rightarrow AH=MN=12\)

b/ Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/677639.html