Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\)
A B H C D
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
Cho hình thang vuông ABCD, biết AB = 4cm, AD=6 cm, CD=12 cm , góc A = góc D = 90 độ . Tính độ dài BC
(Hình vẽ chưa được chuẩn lắm, bạn vẽ lại cho chuẩn nha)
A B C D H 4 cm 6 cm
Vẽ thêm \(BH\perp CD\left(H\in CD\right)\)
Ta có tứ giác ABHD có 3 góc vuông
=> Tứ giác ABHD là hình chữ nhật
=> AB = HD = 4 cm ; AD = BH = 6 cm
=> HC = CD - HD = 12 - 4 = 8 (cm)
Ta thấy: Tam giác BHC vuông tại H
Áp dụng định lý Pytago, ta có: \(BC=\sqrt{BH^2+CH^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (Cm)
Vậy BC = 10 cm