K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

mình mới từ lớp 8 -> 9 nên chắc không thể làm bài này 

bn có thể tham khảo nếu đúng k cho mk nhé 

ok

hình vẽ

từ B kẻ dừng thẳng vuông góc với Cd tại e 

ta có 

BE = Ad = 12 cm 

áp dụng ding lý py-ta-go trong tam giác BCE

tính được Bc 

còn lại thì mình chưa học lượng giác nên chịu thôi

hình vẽ

13 tháng 7 2017

cảm ơn bạn ạ :v mình ghi nhầm số nên tính không ra 

19 tháng 10 2023

loading...  loading...  loading...  loading...  

13 tháng 9 2018

đúng 0?

13 tháng 9 2023

a) Ta có hình thang vuông ABCD, nên ta có: AB^2 + BC^2 = AC^2 AD^2 + DC^2 = AC^2

Vì AB = 15cm, AD = 20cm và ABCD là hình thang vuông, nên ta có: 15^2 + BC^2 = AC^2 20^2 + DC^2 = AC^2

Vì 2 đường chéo AC và BD vuông góc tại O, nên ta có: OB^2 + BC^2 = OC^2 OD^2 + DC^2 = OC^2

Vì ABCD là hình thang vuông, nên ta có: OB^2 + BC^2 = OD^2 + DC^2

Từ hai phương trình trên, ta có thể suy ra OB = OD.

b) Ta có thể tính đường chéo AC bằng cách sử dụng định lí Pythagoras trên tam giác vuông AOC: AC^2 = AO^2 + OC^2

Vì OB = OD, nên ta có AO = OD = OB.

Vậy, ta có: AC^2 = OB^2 + OC^2

c) Để tính diện tích SABCD, ta có thể sử dụng công thức

a: ΔABD vuông tại A

=>BD^2=AB^2+AD^2=625

=>BD=25cm

ΔABD vuông tại A có AO là đường cao

nên BO*BD=BA^2 và DO*DB=DA^2 và AO^2=OD*OB

=>BO=15^2/25=9cm; DO=20^2/25=16cm; AO^2=9*16=144

=>AO=12cm

b: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD

=>ΔOAB đồng dạng với ΔOCD

=>OA/OC=OB/OD

=>9/16=12/OC

=>OC=16*12/9=16*4/3=64/3cm

AC=12+64/3=100/3cm

c: \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot\dfrac{100}{3}\cdot25=\dfrac{50}{3}\cdot25=\dfrac{1250}{3}\left(cm^2\right)\)

13 tháng 4 2018

a, Tính được DB=15cm.  A D B ^ ≈ 37 0 ;  A B D ^ ≈ 53 0

b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm

c, Kẻ OK ⊥ DC tại K

DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm

Từ đó  S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2

9 tháng 6 2017

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

28 tháng 9 2021

Áp dụng HTL:

\(BH^2=DH\cdot HC=48\Leftrightarrow BH=4\sqrt{3}\left(cm\right)\)

Dễ thấy ABHD là hcn nên \(BH=AD=4\sqrt{3}\left(cm\right)\)

Ta có:

\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{4\sqrt{3}}{4}=\sqrt{3}=\tan60^0\\ \Leftrightarrow\widehat{ABD}=60^0\\ \Leftrightarrow\widehat{ABC}=\widehat{ABD}+\widehat{CBD}=60^0+90^0=150^0\)