K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

1 tháng 9 2016

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

thay đổi thông tin đi

10 tháng 8 2016

diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2

10 tháng 8 2016

\(\frac{1}{2}\)x2(2+4)=6(cm^2(

8 tháng 5 2018

Đáp án cần chọn là: D

Từ B kẻ BH vuông góc với CD.

Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.

Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.

Do đó: HC = DC – HD = 4 – 2 = 2cm.

Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.

Lại có B H C ^ = 90 °  (do BH CD) nên tam giác BHC vuông cân tại H.

Do đó  B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °

Xét hình thang ABCD có:

A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °

Vậy A B C ^ = 135 ° .

11 tháng 9 2021

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

Hình đây ạ !!:

undefined

10 tháng 8 2022

H ở đâu ra v ạ

 

20 tháng 6 2017
Kẻ đường cao BH (H thuộc CD).
Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau).
Suy ra BH = AB = 2
Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều.
Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\)
Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
29 tháng 6 2017

Hình thang