K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)

26 tháng 8 2021

https://hoc24.vn/hoi-dap/tim-kiem?id=178370&q=M%E1%BB%99t%20h%C3%ACnh%20thang%20c%C3%A2n%20c%C3%B3%20%C4%91%C3%A1y%20l%E1%BB%9Bn%20d%C3%A0i%202%2C7cm%2C%20c%E1%BA%A1nh%20b%C3%AAn%20d%C3%A0i%201m%2C%20g%C3%B3c%20t%E1%BA%A1o%20b%E1%BB%9Fi%20%C4%91%C3%A1y%20l%E1%BB%9Bn%20v%C3%A0%20c%E1%BA%A1nh%20b%C3%AAn%20c%C3%B3%20s%E1%BB%91%20%C4%91o%20b%E1%BA%B1ng%20600.%20T%C3%ADnh%20%C4%91%E1%BB%99%20d%C3%A0i%20c%E1%BB%A7a%20%C4%91%C3%A1y%20nh%E1%BB%8F

26 tháng 8 2021

Kẻ AH CD , BK⊥CD

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = √1−x2

Có: Sin60 = AH/AD ➝√3/2 -√1−x➝1−x2=3/4➝x2=1/4➝[x=12(n)

                                                                                            x=−12(l)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

27 tháng 7 2023

a) Xét \(\Delta ACD\) vuông tại C, có:

\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)

AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)

Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân

b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)

BC//AD=>BCA=CAD (so le trong)

Mà BAC=DAC (cm a) 

=> BAC=BCA => tam giác ABC cân tại A =>BC=AB 

ABCD là hthang cân => AB=CD

Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)

\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)

9 tháng 10 2017

1) a) Do ABCD là hình thang cân => góc D = góc C ; góc B = góc A 

Trong t/g ABC có : góc A = 90 độ => góc D + góc C2 = 90 độ 

Trong t/g ABC có AB = BC ( gt ) => t/g ABC cân tại B => góc A1 = góc C1 

Ta có góc A = 90 độ + góc A1 = góc D + góc C2 + góc C1 = góc C + góc C = 2C 

Mà : 

A + B + C + D = 360 độ = 2A + 2C = 4C + 2C = 6C => góc C = 360 độ : 6 = 60 độ 

=> góc C = góc D ( = 60 độ ) ; góc A = góc B ( = 120 độ ) 

9 tháng 10 2017

mk ko biết

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm