Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Hình tự vẽ nha bạn )
giải
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠ADC= ∠BCD (2 góc tương ứng)
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.
a) Xét ∆ACD và ∆BDC ta có :
DC chung
BC = AD (ABCD là hình thang cân )
ADC = BCD ( ABCD là hình thang cân)
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD (tg ứng)
=> ∆DOC cân tại O
=> OC = OD
Mà AB//DC
ABO = ODC ( so le trong)
BAO = OCN (so le trong)
Mà BDC = ACD (cmt)
=> OAB = ABO
=> ∆AOB cân tại O
=> OA = OB
b) Xét ∆OND và ∆ONC ta có
OC = OD (cmt)
ODC = ONC (cmt)
ON chung
=> ∆OND = ∆ONC (c.g.c)
=> DN = NC(1)
Mà OND + ONC = 180 độ( kề bù)
Mà OND = ONC = 180/2 = 90 độ
=> ON vuông góc với AC(2)
Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)
Chứng minh tương tự ta có :
∆OMA = ∆OMB
=> AM = MB(4)
=> OMB + OMA = 180 độ(kề bù )
=> OMB = OMA = 180/2 = 90 độ
=> OM vuông góc với AB(5)
Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)
Từ (3) và (5) => M , O , N thẳng hàng
Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ODC}=\widehat{OCD}\)
hay OC=OD
A B C D O
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
help meeee