Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Gọi M, N lần lượt là trung điểm của AB và CD
Khi đó, MN vuông AB,CD; IM=MA=MB, IN=ND=NC
IN=d(I, CD)= => IC=ID=
Đường tròn (C) tâm I, bán kính R=IC có phương trình:
* Tọa độ C,D là nghiệm của hệ 2 phương trình: và x-3y-3=0
=> y=1 or y=-1 Vì C có hoành độ dương nên C(6,1) và D(0,-1)
* S=45/2 <=> 1/2. MN.(AB+CD)=45/2
<=> MN(2IM+2IN)=45
<=> MN^2=45/2 => MN=
=> IM=MN-IN=
Mà AB//CD => =>
vói => B(3,5) và C(6,1)
Vậy BC: 4x+3y-27=0
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)
B A K H C E I D
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
Bài 1:
a: \(\overrightarrow{AD}=\left(x+1;y-2\right)\)
\(\overrightarrow{BD}=\left(x-3;y+4\right)\)
\(\overrightarrow{CD}=\left(x-5;y\right)\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+1-2\left(x-3\right)+3\left(x-5\right)=0\\y-2-2\left(y+4\right)+3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1-2x+6+3x-15=0\\4y-2-2y-8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-8=0\\2y-10=0\end{matrix}\right.\)
=>x=4; y=5
b: \(\overrightarrow{AB}=\left(4;-6\right)\)
\(\overrightarrow{BC}=\left(2;4\right)\)
\(\overrightarrow{AD}=\left(x+1;y-2\right)\)
\(\overrightarrow{BD}=\left(x-3;y+4\right)\)
Theo đề, ta có: \(\left\{{}\begin{matrix}x+1-2\cdot4=2\left(x-3\right)+2\\y-2-2\cdot\left(-6\right)=2\left(y+4\right)+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-7=2x-4\\y-2+12=2y+8+4\end{matrix}\right.\)
=>-x=3 và y+10=2y+12
=>x=-3 và -y=2
=>x=-3 và y=-2
c: ABCD là hình bình hành
nên vecto AB=vecto DC
vecto AB=(4;-6)
vecto DC=(x-5;y)
=>4=x-5 và y=-6
=>x=9 và y=-6