K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu

 

18 tháng 8 2020

A B C D 2cm 60cm H E 6cm F E H

Mik ghi ý th, bạn tự giải chi tiết nha

a)Vẽ BE//AD,BH vuông góc CD.

CM đc ABED là hình bình hành => DE=2,EC=4

Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2

=>AD=BE=2

b)

Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1

Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.

21 tháng 7 2016

A B C D H K 2 5

Kẻ AH và BK vuông góc với CD ta có:

AH//BK mà AB//HK nên ABKH là hình bình hành

Ta có góc H = góc K = 90 độ suy ra hình bình hành ABKH là hình chữ nhật

Suy ra HK=AB=2 (cm) nên DH+CK=CD-HK=5-2=3 (cm)

Xét tam giác AHD và tam giác BKC ta có:

góc H = góc K =90 độ

góc D = góc C (ABCD là hình thang cân)

AD=BC (ABCD là hình thang cân) 

Do đó tam giác AHD = tam giác BKC ( cạnh huyền - góc nhọn) 

Suy ra DH=CK (2 cạnh tương ứng)

Suy ra DK= 3/2=1.5

Ta lại có góc DAH + góc HAB = góc A

nên góc DAH = góc A - góc HAB = 127-90= 37 độ

tan góc DAH = \(\frac{DH}{AH}\)  suy ra AH= \(\frac{DH}{\tan DAH}\)

                                                =\(\frac{1,5}{\tan37}\approx2\left(cm\right)\)

SABCD \(\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(2+5\right)\cdot2}{2}=7\left(cm^2\right)\)

 

6 tháng 8 2022

Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!

Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.

Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:

$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$

Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:

$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)

⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$

⇒ $\(CH=DK=\dfrac{120}{13}\)$

Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:

$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$

Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................