K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Do ABCD là hình thang cân nên.

\(\widehat {ADC} = \widehat {BCD}\)hay \(\widehat {EDC} = \widehat {ECD}\)

Do ABCD là hình thang cân nên

\(\widehat {BAD} = \widehat {ABC}\left( 1 \right)\)

Mà:

\(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = {180^0}\\\widehat {ABC} + \widehat {EBA} = {180^0}\end{array}\)

Suy ra:

\(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = \widehat {ABC} + \widehat {EBC}\\ \Rightarrow \widehat {EAB} = \widehat {EBA}\end{array}\)(do(1))

b, Do \(\widehat {EAB} = \widehat {EBA}\) suy ra \(\Delta EAB\)cân tại E nên EA = EB

Do \(\widehat {EDC} = \widehat {ECD}\) suy ra \(\Delta ECD\)cân tại E nên ED = EC

Mà: ED = EC

Suy ra EA + AD = EB + BC

Suy ra AD = BC (do EA = EB)

c, Xét \(\Delta ADC\) và \(\Delta BCD\) có:

AD = BC

\(\widehat {ADC} = \widehat {BCD}\)

DC chung

Suy ra: \(\Delta ADC = \Delta BCD(c.g.c) \Rightarrow AC = BD\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Do ABCD là hình thang nên AB//CD.

Kẻ BE//AC, \(E \in CD\) nên CE//AB.

\( \Rightarrow \widehat {BCE} = \widehat {ABC}\); \(\widehat {CBE} = \widehat {ACB}\) (hai góc so le trong).

a, Xét \(\Delta ABC\)và \(\Delta ECB\) có:

\(\widehat {BCE} = \widehat {ABC}\)

BC chung

\(\widehat {CBE} = \widehat {ACB}\) (do BC//AC )

\( \Rightarrow \Delta ABC = \Delta ECB\)(g.c.g)

b, BE = AC = BD

\( \Rightarrow \Delta BDE\)cân tại B

\( \Rightarrow \widehat {BDE} = \widehat {BED}\)

Do \(\Delta ABC = \Delta ECB\)

\( \Rightarrow \widehat {BEC} = \widehat {BAC}\) (2 góc tương ứng) hay \(\widehat {BED} = \widehat {BAC}(1)\)

Mà: \(\widehat {BAC} = \widehat {ACD}\) (do AB//CD)  (2)

Từ (1), (2) suy ra: \(\widehat {BED} = \widehat {ACD}\)

c, Theo câu b:

 \(\begin{array}{l}\widehat {BED} = \widehat {BDE}\\\widehat {ACD} = \widehat {BED}\end{array}\) suy ra: \(\widehat {ACD} = \widehat {BDE}\) hay \(\widehat {ACD} = \widehat {BDC}\)

Xét \(\Delta ACD\)và \(\Delta BDC\)có:

CD chung

\(\widehat {ACD} = \widehat {BDC}\)

AC = BD (gt)

\( \Rightarrow \Delta ACD = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {ADC} = \widehat {BCD}\) (2 góc tương ứng)

d,  Hình thang ABCD (AB//CD) có \(\widehat {ADC} = \widehat {BCD}\)nên hình thang ABCD là hình thang cân.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Xét \(\Delta ADC\)và \(\Delta BDC\)có:

DC là cạnh chung.

\(\widehat {ADC} = \widehat {BCD}\)(do ABCD là hình thang cân)

AD = BC

\( \Rightarrow \Delta ADC = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {CAD} = \widehat {DBC}\)(2 góc tương ứng) hay

Do: \(\Delta ADC = \Delta BDC\)

Xét \(\Delta BAD\)và \(\Delta ACB\)có:

AB chung

AD = BC

AC = BD

\( \Rightarrow \Delta BDA = \Delta ACB\) (c.c.c)

\( \Rightarrow \widehat {BDA} = \widehat {ACB}\)(2 góc tương ứng) hay \(\widehat {TDA} = \widehat {TCB}\)

b, Xét \(\Delta TAD\)và \(\Delta TBC\)có:

\(\widehat {TAD} = \widehat {TBC}\)(theo câu a)

AD = BC (ABCD là hình thang cân)

\(\widehat {TDA} = \widehat {TCB}\)(theo câu a)

\( \Rightarrow \Delta TAD = \Delta TBC \Rightarrow TA = TB,TC = TD\)

c, Vì: TA = TB \( \Rightarrow \Delta ATB\)cân tại T suy ra TM là trung trực của AB

TC = TD \( \Rightarrow \Delta DTC\)cân tại T suy ra TN là trung trực của CD

Mà: M, T, N thẳng hàng. Nên MN là đường trung trực của cả 2 đường thẳng AB và CD

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a) Xét hai tam giác ABC và CDA có:AB = CD; AD = BC; AC chung nên \(\Delta ABC = \Delta C{\rm{D}}A(c - c - c)\)

Suy ra: \(\widehat {BAC}\) = \(\widehat {DCA};\widehat {ACB}\) = \(\widehat {CAD}\).

Nên ABCD hình bình hành.

b) Xét hai tam giác ABO và tam giác  CDO có: \(OA = OB;\widehat {AOB} = \widehat {CO{\rm{D}}};OC = O{\rm{D}}\)

Suy ra: \(\Delta ABO = \Delta C{\rm{D}}O\)

Suy ra: \(\widehat {BAC}\) = \(\widehat {DCA};\widehat {ACB}\) = \(\widehat {CA{\rm{D}}}\).

Nên ABCD là hình bình hành.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Vì ABCD là hình bình hành nên AB // CD; AD // BC.

Suy ra \(\widehat {BAC} = \widehat {AC{\rm{D}}};\widehat {BCA} = \widehat {DAC}\)(hai góc so le trong).

Xét ∆ABC và ∆CDA có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

Cạnh AC chung.

 \(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆ABC = ∆CDA (g.c.g).

Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); \(\widehat {ABC} = \widehat {C{\rm{D}}A}\) (hai góc tương ứng).

b) Xét ∆ABD và ∆CDB có:

AB = CD (chứng minh trên);

AD = BC (chứng minh trên);

Cạnh BD chung.

Do đó ∆ABD = ∆CDB.

Suy ra \(\widehat {DAB} = \widehat {BC{\rm{D}}}\) (hai góc tương ứng).

c) Xét ∆AOB và ∆COD có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

AB = CD (chứng minh trên);

\(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆AOB = ∆COD (g.c.g).

Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).

22 tháng 4 2017

a)

2016-01-16_191244

Vậy ∠EBD = 900

Vậy trong hình vẽ có ba tam giác vuông đó là:

∆ABE, ∆CBD, ∆EBD.

b) ∆ABE và ∆CDB có:

∠A = ∠C = 900

∠ABE = ∠CDB

=> ∆ABE ∽ ∆CDB => AB/CD = AE/CB
=> CD = AB.CB/AE
= 18 (cm)

∆ABE vuông tại A => BE =

2016-01-16_194702 = 18 cm

∆EBD vuông tại B => ED =

2016-01-16_194738

= 28,2 cm

c) Ta có: 2016-01-16_194946

= 1/2 . 10.15 + 1/2 . 12.18

= 75 + 108 = 183 cm2

SACDE = 1/2 (AE + CD).AC =1/2 (10+18).27=378 cm2

=> SEBD = SEBD – ( SABE + SDBC) = 378 – 183 = 195cm2

15 tháng 3 2018

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chứng minh

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8
HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Do ABCD là hình bình hành: AB = CD.

Do ABMN là hình bình hành: AB = MN

Suy ra: CD = MN = AB

b, Do ABCD là hình bình hành \( \Rightarrow \widehat {BCD} = \widehat {DAB}\)

Do ABMN là hình bình hành \( \Rightarrow \widehat {BMN} = \widehat {NAB}\)

\(\widehat {BCD} + \widehat {BMN} = \widehat {DAB} + \widehat {NAB} = \widehat {DAN}\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a) Xét tam giác ABD và tam giác CDB có:

\(\widehat {ABD} = \widehat {CDB}\) ( vì AB //CD)

BD chung

\(\widehat {ADB} = \widehat {CBD}\) (vì AD // BC)

Suy ra: \(\Delta ABD = \Delta CDB\)(g - c - g)

Suy ra: AB = CD, DA = BC.

b) Vì \(\Delta AB{\rm{D}} = \Delta C{\rm{D}}B\) (g - c - g) suy ra: \(\widehat {DAB}\) = \(\widehat {BCD}\)

Xét tam giác ABC và tam giác CDA có:

AB = CD (cmt)

Cạnh AC chung

BC = AD (cmt)

\(\Delta ABC = \Delta CDA (c - c - c) \Rightarrow \widehat {ABC} = \widehat {CDA}\) (2 góc tương ứng)

c) Xét tam giác OAB và OCD có:

\(\begin{array}{l}\widehat {OAB} = \widehat {OCD} (cmt)\\AB = CD (cmt)\\\widehat {OBA} = \widehat {ODC} (cmt)\end{array}\)

Suy ra: \(\Delta OAB = \Delta OC{\rm{D}}\) (g - c - g) suy ra: OA = OC; OB = OD (các cạnh tương ứng)

26 tháng 7 2018

Bài này quá dễ

a, Hình thang ABCD có góc A = góc B nên ABCD là hình thang cân

Suy ra: góc C = góc D (DHNB)

b, ABCD là hình thang cân(cmt) nên AD=BC (t/c hình thang cân)

25 tháng 7 2017

tu ve hinh nha 

CÓ AB//CD

=> GÓC OAB = GOC ODC( 2 GÓC ĐỒNG VỊ )

VA  GÓC OBS = GÓC OCD ( 2 GÓC ĐỒNG VỊ )

MÀ GÓC ODC = GÓC OCD( ABCD LÀ  HÌNH THANG CÂN )

=> GÓC OAB = GÓC OBÂ

=> TAM GIAC OAB LA TAM GIÁC CÂN 

B) XÉT TAM GIÁC  BAD VÀ TAM GIÁC ABC CÓ :

AD=BC( ABCD LÀ HÌNH THANG CÂN )

AB CHUNG

AC=DC ( ABCD LA HINH THANG CÂN ) 

=>  Tam giác ABD = tgiac BAC 

C) CÓ TAM GIÁC ABC= TAM GIÁC BAD( CM CÂU B)

=> GÓC BAC = GÓC ABD ( 2 GÓC TƯƠNG ỨNG )

=> TAM GIÁC EAB CÂN TẠI E( CMT CÂU C)

=> AE=BE( ĐN TAM GIÁC CÂN )

CÓ AC = BD( ABCD LÀ HÌNH THANG CÂN )

MÀ AE = BE ( CMT)

=> ED=EC

D) CÓ AO =BO( TAM GIÁC AOB CÂN TẠI O) 

=> O THUỘC VÀO ĐƯỜNG TRUNG TRỰC CỦA AB 

CÓ EB=EB 

=> E THUỘC VÀO ĐƯỜNG TRUNG TRỰC CỦA AB 

=> OE THUỘC VÀO ĐG TT CỦA AB 

CÓ OD=OC ( CÁI NÀY TỰ CM ) 

=> O THUỘC VÀO ĐG TT CỦA CD 

CÓ ED=EC 

=> E THUỘC VÀO ĐG TT CỦA CD 

=> OE THUỘC ....... CD