K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

Xét \(\Delta ABDv\text{à}\Delta BAC\)CÓ AB chung AD=BC (ABCD là ht cân) BD=AC (ABCD là ht cân)

Nên \(\widehat{ABD}=\widehat{BAC}\)hay \(\widehat{OAB}=\widehat{OBA}\)nên tam giác OAB cân tại O nên OA=OB

OC=OD chúng minh tương tự

b, Xét tam giác DAC có MA=MD và KA=KC nên MK là đg trung bình của tam giác DAC => MK//DC  Mà DC//AB nên MK//AB (đpcm)

c,Xet tam giác ADC có MI//AB và MD=MA nên IB=ID nên I là tđ của BD đpcm

8 tháng 9 2021

e, Ta có IB=ID, KA=KC và BD=AC nên KC=ID 

Ta có \(\widehat{ADC}=\widehat{BCD}v\text{à}\widehat{ODC}=\widehat{OCD}\Rightarrow\widehat{ODA}=\widehat{OCB}\)

Xét tam giác IDA và KCB có AD=BC  , ID=KC và \(\widehat{ODA}=\widehat{OCB}\)nên tam giác IDA=KCB => IA=KB

Xét tứ giác AIKB có  IK//AB VÀ IA=KB nên tứ giác AIKB là hình thang cân đpcm

Hình tự vẽ nha 

Chúc học tốt 

25 tháng 7 2017

tu ve hinh nha 

CÓ AB//CD

=> GÓC OAB = GOC ODC( 2 GÓC ĐỒNG VỊ )

VA  GÓC OBS = GÓC OCD ( 2 GÓC ĐỒNG VỊ )

MÀ GÓC ODC = GÓC OCD( ABCD LÀ  HÌNH THANG CÂN )

=> GÓC OAB = GÓC OBÂ

=> TAM GIAC OAB LA TAM GIÁC CÂN 

B) XÉT TAM GIÁC  BAD VÀ TAM GIÁC ABC CÓ :

AD=BC( ABCD LÀ HÌNH THANG CÂN )

AB CHUNG

AC=DC ( ABCD LA HINH THANG CÂN ) 

=>  Tam giác ABD = tgiac BAC 

C) CÓ TAM GIÁC ABC= TAM GIÁC BAD( CM CÂU B)

=> GÓC BAC = GÓC ABD ( 2 GÓC TƯƠNG ỨNG )

=> TAM GIÁC EAB CÂN TẠI E( CMT CÂU C)

=> AE=BE( ĐN TAM GIÁC CÂN )

CÓ AC = BD( ABCD LÀ HÌNH THANG CÂN )

MÀ AE = BE ( CMT)

=> ED=EC

D) CÓ AO =BO( TAM GIÁC AOB CÂN TẠI O) 

=> O THUỘC VÀO ĐƯỜNG TRUNG TRỰC CỦA AB 

CÓ EB=EB 

=> E THUỘC VÀO ĐƯỜNG TRUNG TRỰC CỦA AB 

=> OE THUỘC VÀO ĐG TT CỦA AB 

CÓ OD=OC ( CÁI NÀY TỰ CM ) 

=> O THUỘC VÀO ĐG TT CỦA CD 

CÓ ED=EC 

=> E THUỘC VÀO ĐG TT CỦA CD 

=> OE THUỘC ....... CD 

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độa, Chứng minh AC là phân giác góc Ab, Tứ giác ABCD là hình gì? tại sao?Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cma, BC=?b, So sánh khoảng cách từ M đến BC và đường cao hình thang.Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.a, Cmr: S là...
Đọc tiếp

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé  mình sắp phải nộp rồi 

 
1

Bài 1: 

a: Xét tứ giác ABCD có góc B+góc D=180 độ

nên ABCD là tứ giác nội tiếp

=>góc BAC=góc BDC và góc DAC=góc DBC

mà góc CBD=góc CDB

nên góc BAC=góc DAC

hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC

=>góc BCA=góc CAD

=>BC//AD

=>ABCD là hình thang

mà góc B=góc BCD

nên ABCD là hình thang cân

23 tháng 10 2019

bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông)  .Ta đc DA=DE , mà AD =BC nên BC = DC 

 Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông )  .( 1) 

         Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN  mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2) 

Từ (1) và (2) suy ra là htc 

23 tháng 10 2019

caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI