K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

a) C/M ABCM là HBH

Ta có AB//CM (vì AB//CD)

AB=CM (gt)

Vậy ABCM là HBH

b) C/M AD⊥AM

Ta có AD=AM (Cùng bằng BC)

⇒ΔADM cân tại A

Mà ∠ADM=45o

Nên ΔADM vuông cân tại A

Vậy AD⊥AM

c) AMED hình gì

Ta có ΔADE có ∠D=90o và ∠DAE=45o

Nên ΔADE vuông cân tại D

⇒DA=DE

Nên DE=AM (vì AD=AM)

Mà DE//AM (gt)

Nên AMED là HBH

Có ∠DAM=90o (c/m b)

Nên AMED là HCN

Có AD=AM (ΔADM vuông cân)

Vậy AMED là hình vuông

27 tháng 11 2018

địt mẹ mày

27 tháng 11 2018

Mời tham khảo link :

         https://goo.gl/BjYiDy

26 tháng 12 2017

https://goo.gl/BjYiDy

30 tháng 11 2017

 a , xetys tứ giác adme có :

me//ad (vì me//ac)

md//ae(vì md//ab)

suy ra tứ giác adme là hbh 

12 tháng 11 2019

A C B M H E D O I

Cm: a) Ta có: BA \(\perp\)AC (gt)

                        HD // AB (gt)

=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)

Ta lại có: AC \(\perp\)AB (gt)

   HE // AC (gt)

=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)

Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)

  \(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)

=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2) 
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)

hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)

=> \(AM\perp DE\)(Đpcm)

c) (thiếu đề)