K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Hạ CH và DK vuông góc với AB

Ta có:

A K = B H = 1 2 A D = 1 c m  

Từ đó: CD = 2,5cm

C H = 3 c m

S A B C D = A B + C D . C D 2 = 7 3 2 c m 2

11 tháng 7 2018

ai h minh minh h lai cho

11 tháng 7 2018

là sao ạ

29 tháng 8 2020

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2020

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)

31 tháng 7 2020

A B C D H

Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật

Ta có : \(DH=DC-HC\)

                    \(=DC-AB\)  (Vì AB = HC)

                     \(=4-3\)

                      \(=1\left(cm\right)\)

Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)

\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o

\(\Rightarrow\)△AHD vuông cân tại H

\(\Rightarrow\)AH = DH

\(\Rightarrow\)AH = 1 (cm)

Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)

31 tháng 7 2020

Xét hình thang ABCD có \(AB//CD\)(gt) có:

\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)

Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)

\(\Leftrightarrow4\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=45^0\)

\(\Rightarrow\widehat{A}=3.45^0=135^0\)

Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)

                                 \(\Leftrightarrow2\widehat{B}=180^0\)

                                 \(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)

Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)

\(\Rightarrow AB=CH=3cm\)(t/c)  \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)

Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)

\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)

Diện tích hình thang ABCD có:

\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)

Đáp số \(3,5cm^2\)

Học tốt 

2 tháng 9 2017

a, Ta có BC//ED

      BE//CD

=> BEDC là hình bình hành

=> BC=ED=2cm(đpcm) 

b,  BEDC là hình bình hành 

=> BE=CD mà CD=AB(hình thang abcd cân)

=> BE=AB

=> TgABE cân tại B có góc A=60

=> tg ABE đều

c,

2 tháng 9 2017

c, tg ABE cân tại B có AH là đường cao đồng thời là đường trung tuyến

=> AH=AE

ta có AE=AD-AE=4-2=2

=> AH=1/2AE=1(đpcm)