Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{BDC}\)
mà \(\widehat{BCD}=\widehat{ADC}=\widehat{ADB}+\widehat{BDC}\)
nên \(\widehat{BCD}=2\cdot\widehat{BDC}\)
=>\(\widehat{BCD}=\dfrac{2}{3}\cdot90^0=60^0\)
=>\(\widehat{ADC}=60^0\)
=>\(\widehat{BAD}=\widehat{ABC}=120^0\)
b: Gọi M là trung điểm của CD
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{CAD}=\widehat{DBC}=90^0\)
Ta có: ΔDBC vuông tại B
mà BM là đường trung tuyến
nên BM=MC
=>ΔBMC cân tại M
mà \(\widehat{MCB}=60^0\)
nên ΔBMC đều
=>BC=MC
Ta có: ΔADC vuông tại A
mà AM là đường trung tuyến
nên MA=MD
=>ΔMAD cân tại M
mà \(\widehat{ADM}=60^0\)
nên ΔMAD đều
=>AD=DM
DM+MC=DC
nên DC=AD+BC=2AB(đpcm)
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm