K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

A B C D E F M 1 2 1

Cm: Xét tứ giác AFED có AF // DE (gt)

              AD // FE (gt)

=> AFED là hình bình hành

b) Xét t/giác BFM và t/giác CEM

có: BM = MC (gt)

 \(\widehat{B_1}=\widehat{C}\) (slt của AF // DC)

\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)

=> t/giác BFM = t/giác CEM (g.c.g)

=> S t/giác BFM = S t/giác CEM

Xét t/giác ADE và t/giác EAF

có AD = EF (do AFED là hình bình hành)

 AF = AE ( ..........................)

 AE : chung

=> t/giác ADE = t/giác EAF (c.c.c)

=> S t/giác ADE = S t/giác EAF (1)

Ta có: SAEF = SABME + SBFM = SABME + SMEC = SABCE (do SBFM = SMEG) (2)

Ta lại có: SABCD = SADE + SABCE = 2SADE

=> SADE = 1/2SABCD (3)

Từ (1); (2) và( 3) => SADE = SABEC = 1/2SABCD

17 tháng 12 2018

a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)

=> FK là đường trung bình của tam giác ACD

=> FK//AD

=> ADKF là hình thang

Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD

=> ME // AD mà FK//AD (cmt)

=> ME//FK (1)

Chứng minh tương tự ta cũng có:

MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC

=> MF//BC ; EK // BC

=> MF//EK (2)

Từ (1) và (2) ta có: EMFK là hình bình hành

18 tháng 12 2018

Bạn biết làm câu b và câu c không

1 tháng 11 2020

a, Vì O là trung điểm EF

MN qua O //AB//CD

=>M là trung điểm AD, N là TD BC

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0
12 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác AFED có 

AF//ED

AD//EF

Do đó: AFED là hình bình hành

b: Xét ΔMBF và ΔMCE có 

\(\widehat{MBF}=\widehat{MCE}\)

MB=MC

\(\widehat{BMF}=\widehat{CME}\)

Do đó: ΔMBF=ΔMCE

Suy ra: MF=ME

hay M là trung điểm của EF

Xét tứ giác BFCE có 

M là trung điểm của BC

M là trung điểm của FE

Do đó: BFCE là hình bình hành