Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
gọi BD giao với AC tại M
xét tam giác MDC ta có : góc MDC= góc MCD (gt)
=> tam giác MDC cân tại M => MC=MD
ta cũng có góc MAB= góc MBA=> tam giác MAB cân tại M
=> MA=MB
xét tam giác ADM và tam giác BCM
ta có : AM=MB (CMT)
MD=MC (CMT)
góc AMD= góc BMC (đ đ)
=> tam giác ADM = tam giác BCM
=> AD=BC
mà ABCD là hình thang
=> ABCD là hình thang cân
A B C D O
Gọi AC cắt BD tại O
Xét tam giác DOC có : góc ODC = góc OCD (gt)
=> tam giác DOC cân tại O
=> DO = OC (đn) (1)
AB // CD (gt)
=> góc BAO = góc OCD (slt)
góc ABO = góc ODC (slt)
mà góc OCD = góc ODC (gt)
=> góc BAO = góc ABO
=> tam giác BAO cân tại O
=> OB = OA
OA + OC = AC
OB + OD = BD và (1)
=> BD = AC ; hình thang ABCD
=> ABCD là hình thang cân (dh)
A B C D 1 1 1 1 E
Gọi E là giao điểm của AC và BD.
+ \(\widehat{C}_1=\widehat{D}_1\Rightarrow\Delta EDC\) cân tại E \(\Rightarrow ED=EC\) ( 1 )
+ AB // CD \(\Rightarrow\widehat{A}_1=\widehat{C}_1\) và \(\widehat{B}_1=\widehat{D_1}\) (Các cặp góc so le trong)
Mà \(\widehat{C}_1=\widehat{D}_1\Rightarrow\widehat{A}_1=\widehat{B_1}\)
\(\Rightarrow\Delta EAB\) cân tại E \(\Rightarrow EA=EB\) ( 2 )
Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.
Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.
Chúc bạn học tốt !!!
đúng thì k mk nhé bạn
gọi o là giao điểm cua ac và bp
ab //cd nên góc bac = góc acp 9 so le trong)
tương tự abd=bdc
tam giác abo cân tại o => oa=od(1)
tam giác odc cân tại o=>od=oc(2)
góc aod =boc(doi dỉnh)(3)
Tư 1 2 3 suy rra tam giác aod =tam giac obc nen ad =bc(40
goc adb =bca(5)
từ 4,5 ta có hình thang abcd cân(có hai cạnh bên = nhau và hai góc ở đáy bằng nhau
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
Xét hình thang ABCD ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{D}=180^o\left(đề.bài\right)\\\widehat{B}+\widehat{A}=180^o\left(t/c.hình.thang\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=\widehat{D}\)
⇒ ABCD là hình thang cân (dpcm)
Ta có : AB // CD ⇒ \(\widehat{B}\) + \(\widehat{C}\) = 180o mà \(\widehat{B}+\widehat{D}=\) 180o ⇒ \(\widehat{D}=\widehat{C}\)
Vì AB // CD; \(\widehat{D}=\widehat{C}\) vậy ABCD là hình thang cân
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
gọi BD giao với AC tại M
xét tam giác MDC ta có : góc MDC = góc MCD (GT)
=>tam giác mdc cân tại M
=> MA=MB
xét tam giác ADM và tam giác BCM , ta có :
AM=MB
MD=MC
góc AMD = góc BMC
=> tam giác ADM = tam giác BCM
=> AD=BC
Mà ABCD là hình thang
=> ABCD là hình thang cân
CHÚC BẠN HỌC TỐT ( nhớ k đúng cho mình nha )😋😋😋😋😋😋😋😋😋