K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi BD giao với AC tại M

xét tam giác MDC ta có : góc MDC = góc MCD (GT)

=>tam giác mdc cân tại M 

=> MA=MB

xét tam giác ADM và tam giác BCM , ta có :

          AM=MB

          MD=MC

          góc AMD = góc BMC

=> tam giác ADM = tam giác BCM

=> AD=BC 

    Mà ABCD là hình thang 

=> ABCD là hình thang cân

CHÚC BẠN HỌC TỐT ( nhớ k đúng cho mình nha )😋😋😋😋😋😋😋😋😋

30 tháng 12 2018

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

31 tháng 12 2018

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

24 tháng 7 2015

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

3 tháng 7 2017

O A B C D 1 2 1 2

7 tháng 8 2016

gọi BD giao với AC tại M 

xét tam giác MDC ta có : góc MDC= góc MCD (gt)

=> tam giác MDC cân tại M => MC=MD

ta cũng có góc MAB= góc MBA=> tam giác MAB cân tại M 

=> MA=MB

xét tam giác ADM và tam giác BCM

ta có : AM=MB (CMT)

           MD=MC (CMT)

góc AMD= góc BMC (đ đ)

=> tam giác ADM = tam giác BCM

=> AD=BC

mà ABCD là hình thang 

=> ABCD là hình thang cân

12 tháng 8 2021

dung

 

16 tháng 9 2019

A B C D O

Gọi AC cắt BD tại O

Xét tam giác DOC có : góc ODC = góc OCD (gt)

=> tam giác DOC cân tại O

=> DO = OC (đn)     (1)

AB // CD (gt)

=> góc BAO = góc OCD  (slt)

     góc ABO = góc ODC  (slt)

mà góc OCD = góc ODC (gt)

=> góc BAO = góc ABO

=> tam giác BAO cân tại O

=> OB = OA

OA + OC = AC

OB + OD = BD   và (1)

=> BD = AC  ; hình thang ABCD 

=> ABCD là hình thang cân (dh)

16 tháng 9 2019

A B C D 1 1 1 1 E

Gọi E là giao điểm của AC và BD.

\(\widehat{C}_1=\widehat{D}_1\Rightarrow\Delta EDC\)  cân tại E \(\Rightarrow ED=EC\) ( 1 )

+ AB // CD \(\Rightarrow\widehat{A}_1=\widehat{C}_1\) và \(\widehat{B}_1=\widehat{D_1}\)  (Các cặp góc so le trong)

Mà \(\widehat{C}_1=\widehat{D}_1\Rightarrow\widehat{A}_1=\widehat{B_1}\)

\(\Rightarrow\Delta EAB\) cân tại E \(\Rightarrow EA=EB\) ( 2 )

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

Chúc bạn học tốt !!!

6 tháng 1 2017

Ta có B = D

=> 180o - A = D

=> A + D = 180o

Vậy ABCD là HBH

6 tháng 1 2017

có nick violympic v11 k?

15 tháng 9 2016

đúng thì k mk nhé bạn

gọi o là giao điểm cua ac và bp 

ab //cd nên góc bac = góc acp 9 so le trong)

tương tự abd=bdc

tam giác abo cân tại o => oa=od(1)

tam giác odc cân tại o=>od=oc(2)

góc aod =boc(doi dỉnh)(3)

Tư 1 2 3 suy rra tam giác aod =tam giac obc nen ad =bc(40

goc adb =bca(5)

từ 4,5 ta có hình thang abcd cân(có hai cạnh bên = nhau và hai góc ở đáy bằng nhau

30 tháng 12 2018

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

17 tháng 8 2023

Xét hình thang ABCD ta có :

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{D}=180^o\left(đề.bài\right)\\\widehat{B}+\widehat{A}=180^o\left(t/c.hình.thang\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{C}=\widehat{D}\)

⇒ ABCD là hình thang cân (dpcm)

17 tháng 8 2023

Ta có : AB // CD ⇒ \(\widehat{B}\) + \(\widehat{C}\) = 180o mà \(\widehat{B}+\widehat{D}=\) 180o ⇒ \(\widehat{D}=\widehat{C}\)

Vì AB // CD; \(\widehat{D}=\widehat{C}\) vậy ABCD là hình thang cân

19 tháng 6 2015

(Hình thì bạn tự vẽ nha)

a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

9 tháng 12 2016

phần c đâu