Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ABC có :
AM = MB
BN = NC
=> MN là đương trung bình ∆ABC
=> MN //AC (1)
Xét ∆ADC có :
AQ = QD
=> PQ //AC (2)
Từ (1) và (2) ta có :
MN //PQ (3) .
CMTT ta có :
MQ // NP (4)
=> Từ (3) và (4) ta có :
=> MNPQ là hình bình hành (dpcm)
a. ΔABC có : AM=MB (gt)
BN=NC (gt)
=> MN là đường trung bình của ΔABC
=>MN//AC(1)
ΔADC có : AQ=QD(gt)
CP=PD(gt)
=>PQ là đường trung bình của ΔADC
=>PQ//AC(2)
Từ (1) và (2) => MN//PQ (3)
CMTT ta có : MQ//NP(4)
Từ (3) và (4)=> MNPQ là hình bình hành
b. MNPQ là hình chữ nhật <=> Góc M1 = 90°
Mà MN//AC => góc K1 = 90°
NP//MQ => góc O1 = 90°
hay AC⊥BD
Vậy tứ giác ABCD có AC⊥BD thì MNPQ là hình chữ nhật 1 1 1 A B C D M N P Q (Vẽ hình hơi lỗi :v)
Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBDcó
N,P lần lượt là trung điểm của CB,CD
=>NP là đường trung bình
=>NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
Xét ΔBAC có M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN=AC/2=BD/2=MQ
Xét tứ giác MNPQ có
MQ//NP
MQ=NP
=>MNPQ là hình bình hành
mà MN=MQ
nên MNPQ là hình thoi
Bài 1:
Xét ΔMKQ có
A là trung điểm của KM
B là trung điểm của KQ
Do đó: AB là đường trung bình của ΔMKQ
Suy ra: AB//MQ
Xét tam giác ABD có
E là trung điểm AD
P là trung điểm BD
=> EP là đường trung bình của tam giác ABD (1)
Xét tam giác ABC có :
Q là trung điểm AC
F là trung điểm CB
=> QF là đường trung bình của tam giác ABC (2)
Xét tứ giác ABCD có :
Q là trung điểm AC
P là trung điểm BD
=> QP là đường trung bình của tứ giác ABCD (3)
Từ (1) ; (2) ; (3)
=> Q , F , E , P thẳng hàng
a) Tam giác ABC có :
MA = MB (gt)
NB = NC (gt)
nên MN là đường trung bình của tam giác ABC , do đó MN // AC và MN = 1212AC.
Chứng minh tương tự : PQ // AC và PQ = 1212AC.
Suy ra MN // PQ và MN = PQ.
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau ⇒⇒ tứ giác MNPQ là hình bình hành
b, Để MNPQ là hình vuông thì MN=NP=PQ=QM ⇒⇒ AC=BDAC=BD
Để MNPQ là hình chữ nhật thì MN phải vuông góc với MQ ⇒⇒ AC phải vuông góc với DB
Để MNPQ là hình thoi thì MP phải vuônng góc với QN ⇒⇒ AB phải vuông góc với AD