\(\dfrac{ED}{CD}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMED có

góc MAB=góc MED

góc AMB=góc EMD

=>ΔMAB=ΔMED

=>MA/ME=MB/MD=AB/ED

=>ME*AB=MA*ED

Xet ΔNAB và ΔNCE có

góc NAB=góc NCE

góc ANB=góc CNE

=>ΔNAB đồng dạng với ΔNCE

=>NA/NC=NB/NE=AB/CE

b: ME/MA=DE/AB

NE/NB=EC/AB

mà DE=EC

nên ME/MA=NE/NB

=>MN//AB

7 tháng 3 2017

2) a) \(\frac{x^2-5x+1}{2x+1}+2=-\frac{x^2-4x+1}{x+1}\) (ĐKXĐ: \(x\ne-\frac{1}{2};-1\))

+) x = \(-\frac{2}{3}\), thay vào đề không TM

+ x\(\ne-\frac{2}{3}\)

Từ đề \(\Rightarrow\frac{x^2-5x+1+4x+2}{2x+1}=\frac{-x^2+4x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-x+3}{2x+1}=\frac{-x^2+4x-1}{x+1}=\frac{\left(x^2-x+3\right)+\left(-x^2+4x-1\right)}{\left(2x+1\right)+\left(x+1\right)}\) \(=\frac{3x+2}{3x+2}=1\)

\(\Rightarrow x^2-x+3=2x+1\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow\left[\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy ...

7 tháng 3 2017

chỗ x = -2/3 sửa thành có TM

a: Gọi K là trung điểm của BC

Xét ΔBDC có BN/BD=BK/BC

nên KN//DC và KN=1/2DC

Xét ΔCAB có CM/CA=CK/CB

nên MK//AB và MK=1/2AB

=>MK//DC

mà KN//DC

nên K,N,M thẳng hàng

=>MN//AB

b: MN=NK-MK=1/2(CD-AB)

1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD 2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR a) DM2=MN. MK b) \(\dfrac{DM}{DN}\)+\(\dfrac{DM}{DK}\) =1 3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC,...
Đọc tiếp
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD 2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR a) DM2=MN. MK b) \(\dfrac{DM}{DN}\)+\(\dfrac{DM}{DK}\) =1 3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\)+\(\dfrac{B'C}{B'A}\)+\(\dfrac{C'A}{C'B}\)=1 4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ 5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF hattori heiji
0
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD 2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR a) DM2=MN. MK b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1 3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC,...
Đọc tiếp

1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD

2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR

a) DM2=MN. MK

b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1

3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1

4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ

5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF

hattori heiji

5
13 tháng 2 2018

2b

do ABCDlà hbh

=> AD=BC

AB//CD=>NB//CD

AD//BC => AD//CK

vì NB//CD

=>\(\dfrac{DM}{MK}=\dfrac{AD}{CK}\) (theo hệ quả ta-lét)

mà AD=BC

=> \(\dfrac{DM}{MK}=\dfrac{BC}{CK}\) (*)

vì AD//CK

=> \(\dfrac{DN}{DK}=\dfrac{BC}{CK}\) (theo đl ta-lét) (**)

Từ (*) và (**) ta có

\(\dfrac{DN}{DK}=\dfrac{DM}{MK}\) =>\(\dfrac{MK}{DK}=\dfrac{DM}{DN}\)

ta có

\(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{MK}{DK}+\dfrac{DM}{DK}=\dfrac{DK}{DK}=1\) (đpcm)

12 tháng 2 2018

hattori heiji giải dùm kìa

16 tháng 2 2020

A B C D N M E

a, kẻ AM cắt CD tại E 

xét tam giác AMB và tam giác EMD có : góc AMB = góc EMD (đối đỉnh)

DM = MB do M là trung điểm của BD (gt)

góc ABM = góc MDE (so le trong AB // DC)

=> tam giác AMB = tam giác EMD (g-c-g)                                                      (1)

=> AM = ME (đn) có M nằm giữa A và E 

=> M là trung điểm của AE 

N là trugn điểm của AC (gt) ; xét tam giác AEC 

=> MN là đường trung bình của tam giác AEC  (đn)                                              (2)

=> MN // EC   (Đl)

CE // AB

=>  MN // AB 

b, (2) => MN = EC/2

EC = CD - DE

=> MN = (CD - DE) : 2

(1) => DE = AB 

=> MN = (CD - AB) : 2