K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 9 2019
a. Kẻ BE ⊥ CD
Suy ra tứ giác ABED là hình chữ nhật
Ta có: AD = BE
AB = DE = 4 (cm)
Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)
Áp dụng định lí Pitago vào tam giác vuông BCE ta có :
BC2 = BE2 + CE2
Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144
BE = 12 (cm)
Vậy: AD = 12 (cm)
b. Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
Kẻ BH\(\perp DC\)
=< \(\widehat{BHC}=90^0\)
\(\widehat{A}=\widehat{D}=90^0\)
=> ABHD là hcn
=> \(\left\{{}\begin{matrix}BH=AD=3cm\\DH=AB=4cm\end{matrix}\right.\)(các cạnh đối trong hcn)
=> HC=DC-DH=8-4=4(cm)
Áp dụng đlýpy-ta-go vào tam giác vuông BHC có:
\(BC^2=BH^2+HC^2=3^2+4^2=25\)
=> BC=5 (cm)
Áp dụng ht lượng trong tam giác vuông có
\(sin\widehat{C}=\frac{BH}{BC}=\frac{3}{5}\) => \(\widehat{C}\approx37^0\)
\(sin\widehat{HBC}=\frac{HC}{BC}=\frac{4}{5}\) => \(\widehat{BHC}\approx53^0\)
Có : \(\widehat{B}=\widehat{BHC}+\widehat{ABH}=53^0+90^0=143^0\)