K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

kẻ 1 đường thẳng // với 1 đường chéo rồi chứng mình tam giác vuông

25 tháng 8 2017

Thầy Vũ Tiền Châu , thầy giải thích rõ tí đc k ạ ? E vẽ thử mà nghĩ hoài k ra 

7 tháng 1 2017

                           s= 15 x ( 3 + 14 ) : 2 = 127,5

                            s= 8 x ( 3 + 14 ) : 2 = 68

a: Xét ΔDAB vuông tại A có 

\(DB^2=AB^2+AD^2\)

hay DB=25(cm)

Xét ΔDAB vuông tại A có AO là đường cao ứng với cạnh huyền DB

nên \(\left\{{}\begin{matrix}AD^2=DO\cdot DB\\AB^2=BO\cdot BD\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DO=16\left(cm\right)\\OB=9\left(cm\right)\end{matrix}\right.\)

26 tháng 9 2021

\(a,BD=\sqrt{AB^2+AD^2}=25\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AD^2=OD\cdot BD\\AB^2=OB\cdot BD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OD=\dfrac{AD^2}{BD}=16\left(cm\right)\\OB=\dfrac{AB^2}{BD}=9\left(cm\right)\end{matrix}\right.\)

\(b,\) Áp dụng HTL:

\(\left\{{}\begin{matrix}AO^2=DO\cdot OB=144\\AD^2=AO\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AO=12\left(cm\right)\\AC=\dfrac{AD^2}{AO}=\dfrac{100}{3}\left(cm\right)\end{matrix}\right.\)

\(c,DC=\sqrt{AD^2+AC^2}=\dfrac{20\sqrt{34}}{3}\left(cm\right)\\ S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=10\left(\dfrac{20\sqrt{34}}{3}+15\right)=\dfrac{450+200\sqrt{34}}{3}\left(cm^2\right)\)

17 tháng 7 2018

bạn vẽ hình chưa?

18 tháng 7 2018

chưa ạ><