Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O
Ta thấy tam giác ABC và tam giác DAC có chiều cao bằng nhau, cạnh đáy AB = 2/3 DC nên \(\frac{S_{ABC}}{S_{ADC}}=\frac{2}{3}\)
Giả sử AO = k OC
Ta có : \(\frac{S_{ABC}}{S_{ADC}}=\frac{S_{AOB}+S_{BOC}}{S_{OAD}+S_{ODC}}=\frac{k\left(S_{OAD}+S_{ODC}\right)}{S_{OAD}+S_{ODC}}=k=\frac{2}{3}\)
Vậy thì \(\frac{AO}{OC}=\frac{2}{3}\Rightarrow\frac{S_{AOB}}{S_{OCB}}=\frac{2}{3}\Rightarrow S_{AOB}=15\times\frac{2}{3}=10\left(cm^2\right)\)
\(\Rightarrow S_{ABC}=25\left(cm^2\right)\Rightarrow S_{ADC}=25\times\frac{3}{2}=37,5\left(cm^2\right)\)
\(\Rightarrow S_{ABCD}=25+37,5=62,5\left(cm^2\right)\)