Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha
???ng th?ng m: ???ng th?ng qua B, A ???ng th?ng n: ???ng th?ng qua C, D ???ng th?ng p: ???ng th?ng qua O song song v?i f ?o?n th?ng f: ?o?n th?ng [A, D] ?o?n th?ng h: ?o?n th?ng [B, A] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [C, D] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [C, A] ?o?n th?ng q: ?o?n th?ng [P, H] ?o?n th?ng r: ?o?n th?ng [K, H] A = (-2.78, -0.04) A = (-2.78, -0.04) A = (-2.78, -0.04) D = (2.72, -0.06) D = (2.72, -0.06) D = (2.72, -0.06) B = (-2.02, 3.14) B = (-2.02, 3.14) B = (-2.02, 3.14) ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p
Cô hướng dẫn nhé :)
a. Ta thấy P, H lần lượt là trung điểm AB, AD nên PH là đường trung bình tam giác ABD, từ đó suy ra PH//DB.
Tương tự như vậy IQ cũng song song BD, lại có IQ = HP = BD/2 nên HPIQ là hình bình hành.
b. Ta có MN song song hai cạnh đáy, áo dụng định lý Ta let ta có:
\(\frac{MO}{BC}=\frac{AM}{AB}=\frac{DN}{DC}=\frac{ON}{BC}\). Vậy OM = ON.
Ta chứng minh giao điểm của KO với AB, AD sẽ là trung điểm. GIả sử hai giao điểm đó là I, H. Cũng dùng Ta let ta có: \(\frac{BI}{OM}=\frac{KI}{KO}=\frac{IC}{ON}\). Vậy IB = IC. Tương tự HA = HD.
c. \(\frac{BC}{AD}=\frac{OI}{OH}\)
d. \(\frac{S\Delta KBC}{S\Delta KAH}=\left(\frac{BC}{AD}\right)^2=\frac{1}{16}\Rightarrow\frac{SABCD}{S\Delta KAD}=\frac{15}{16}\Rightarrow S\Delta KAD=25,6\Rightarrow S\Delta KAH=\frac{25,6}{2}=12,8\)
Em có không hiểu chỗ nào ko?