Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin loi bai nay minh ko ve duoc hinh.Thong cam cho minh nhe !!!
a)S_ABC = 1/3 S_ADC (Đáy AB = 1/3 đáy CD; Chiều cao hạ xuống đáy từ C bằng chiều cao hạ từ A)
b)S_ABM = 1/3 S_CAM (Đáy AM chung; chiều cao hạ từ B bằng 1/3 chiều cao hạ từ B xuống đáy AM)
c)
S_ABC = 1/3 S_ACD (câu trên) => S_ABC = 1/4 S_ABCD = 64 : 4 = 16 cm2
Mà: S_ABM = 1/3 S_ACM (câu trên) => S_ABM = 1/2 S_ABC = 16 : 2 = 8 cm2
Bài giải
a) Do đề bài không cập nhật độ dài của hình thang ABCD nên ta gọi chiều cao là AD ( với AD = BC ), độ dài cạnh DC là 13 ×3=1cm. Vậy, diện tích hình tam giác ABC là :
13 ×AD2 =16 AD( cm2 )
Diện tích hình tam giác ADC là :
\(\frac{1\times AD}{2}=\frac{1}{2}AD\left(cm^2\right)\)
Vì : \(\frac{1}{6}AD< \frac{1}{2}AD\)
nên diện tích hình tam giác ADC lớn hơn diện tích hình tam giác ABC.
A B C D O M I
a/ Xét tg ABD và tg CBD có đường cao từ D->AB = đường cao từ B->CD nên
\(\frac{S_{ABD}}{S_{CBD}}=\frac{AB}{CD}=\frac{2}{5}\)
b/
Gọi O là giao của AC và BD, nối M với O cắt AB tại I
Ta có \(\frac{S_{ABD}}{S_{CBD}}=\frac{2}{5}\) Hai tg này có chung cạnh BD nên
\(\frac{S_{ABD}}{S_{CBD}}=\) đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\)
Xét tg ABO và tg BCO có chung cạnh BO nên
\(\frac{S_{ABO}}{S_{BCO}}=\)đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\) Hai tg này có chung đường cao từ B->AC nên
\(\frac{S_{ABO}}{S_{BCO}}=\frac{AO}{CO}=\frac{2}{5}\)
Xét tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\frac{S_{AMO}}{S_{CMO}}=\frac{AO}{CO}=\frac{2}{5}\) Hai tg này có chung cạnh MO nên
\(\frac{S_{AMO}}{S_{CMO}}=\) đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\)
Xét tg AMI và tg CMI có chung cạnh MI nên
\(\frac{S_{AMI}}{S_{CMI}}=\)đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\Rightarrow S_{AMI}=\frac{2xS_{CMI}}{5}\)
Chứng minh tương tự ta cũng có
\(\frac{S_{BMI}}{S_{DMI}}=\frac{2}{5}\Rightarrow S_{BMI}=\frac{2xS_{DMI}}{5}\)
\(\Rightarrow S_{AMI}+S_{BMI}=\frac{2}{5}x\left(S_{CMI}+S_{DMI}\right)=\frac{2}{5}x\left(S_{BMI}+S_{BIC}+S_{AMI}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}x\left(S_{AMI}+S_{BMI}\right)=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\) (*)
Xét tg AID và tg AIC có chung cạnh AI và đường cao từ D->AB = đường cao từ C->AB nên \(S_{AID}=S_{AIC}\) Thay vào (*)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AIC}\right)=\frac{2}{5}xS_{ABC}\Rightarrow\frac{S_{AMB}}{S_{ABC}}=\frac{2}{3}\)
Xét tg AMB và tg ABC có chung đường cao từ A->MC nên
\(\frac{S_{AMB}}{S_{ABC}}=\frac{MB}{BC}=\frac{2}{3}\)