K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E.

Ta có:

Góc ACD = góc BED (tính chất góc hình bình hành) 
mà gócBDE = gócBED ( BDE là tam giac cân tại B) 
=> góc ACD= góc BDC 
xét 2 tam giác ACD và tam giác BDC có: 
+ AC = BD ( gt) 
+ góc ACD = góc BDC 
+có cùng cạnh CD 
=> tam giác ACD = tam giác BDC ( cạnh,góc,cạnh) 

 xét hình thang ABCD: 
AD = BC vì tam giác ACD = tam giác BDC 
=> ABCD là hình thang cân.

Vậy hình thang có hai đường chéo bằng nhau là hình thang cân.(đpcm)

23 tháng 6 2016

a/vì AB//DC(gt) suy ra AB//DE

và AC//BE(gt)

do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE

Mà AC=BD(gt)

suy ra BD=BE

Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)

b/Chứng minh:tg ACD=tg BDC 

VÌ tg BDE cân tại B nên ta có :GÓc B1 = GÓc E1(*)

Vì AC//BE(gt)

E=C1 là 2 góc đồng vị 

suy ra góc C1 =góc E(**)

từ (*);(**) suy ra B1=C1

bạn tự xét tg nha

suy ra tg ACD=tg BDC

c/bạn tự cm lun nha

20 tháng 9 2019

A B C D E 1 1

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó  \(\Delta BDE\) cân 

b ) Ta có : AC // BE 

\(\Rightarrow\widehat{C}_1=\widehat{E}\)      ( 3 )

Tam giác BDE cân tại B ( câu a ) nên \(\widehat{D}_1=\widehat{E}\)       ( 4 )

Từ (3 ) và ( 4 ) \(\Rightarrow\widehat{C}_1=\widehat{D}_1\)

Xét \(\Delta ACD\) và \(\Delta BCD\) có AC = CD ( gt )
\(\widehat{C}_1=\widehat{D}_1\left(cmt\right)\)

CD là cạnh chung 

Nên \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)

c ) Vì \(\Delta ACD=\Delta BCD\) ( câu b ) \(\Rightarrow\widehat{ADC}=\widehat{BCD}\)

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Chúc bạn học tốt !!!

10 tháng 10 2020

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang ABCD(AB//CD)ABCD(AB//CD) có AC=BDAC=BD. Qua BB kẻ đường thẳng song song với ACAC, cắt đường thẳng DCDC tại EE. Chứng minh rằng: 

a) BDEBDE là tam giác cân. 

b) △ACD=△BDC.△ACD=△BDC.

c) Hình thang ABCDABCD là hình thang cân.

chúc hok tốt , k nha! sai cũng k

9 tháng 9 2020

Gọi giao điểm 2 đường chéo là O

=> Các tam giác OAB và OCD đều vuông cân tại O.

Vẽ các đường cao OH của tam giác OAB và đường cao OK của tam giác OCD.

Vì AD//CD mà OH vuông góc với AB và OK vông góc với CD nên H,O,K thẳng hàng (cùng nằm trên đường thẳng qua O vuông góc AB), và HK chính là chiều cao hình thang.

+) Tam giác OAB vuông cân tại O, đường cao OH => OH=1/2.AB

+) Tam giác OCD vuông cân tại O, đường cao OK=> OK=1/2.CD

---> Chiều cao hình thang: HK=OH+OK=1/2.(AB+CD) ---> đpcm

17 tháng 6 2016

bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
    từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm 

11 tháng 7 2019

tg BDE cân tại B:

ta có:ACD=BAC(AB//CD) 
 mà ACD =BEC =>BEC=BAC 

xét tg ABC va tg ECB 
+BC chung 
+ACB=EBC(so le trong) 
+BEC=BAC(cm trên ) 
=>tam giac ABC =tam giac ECB 
=>BDC=BEC 
ma `BEC=ACD(đồng vị)

=>ACD=BDC 
xét tg ACD va tg BDC,ta có : 
+DC chung 
+ACD=BDC 
+AC=BD(gt) 
=>tg ACD = tg BDC 
=>ADC=BCD 
=>ABCD la hình thang cân (đpcm) 

22 tháng 5 2017

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

19 tháng 6 2020

A B E C D 1 1

a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân

b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)

Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)

Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)

* Xét 2 tam giác : ACD và BDC có :

DC chung

AC = BD ( gt )

\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)

c) Theo ( c/m câu b ) ta có :

\(\Delta ACD=\Delta BDC\)

nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.