K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Kẻ MP//MD (P \(\in\)AD) ta có:

\(\frac{AM}{AB}=\frac{AP}{AD}\)mà \(\frac{AM}{AB}=\frac{CN}{CD}\left(gt\right)\)nên \(\frac{AP}{AD}=\frac{CN}{CD}\)=> NP//AC

Gọi giao của MP và AC là K, của NP và BD là H

\(\frac{MK}{PK}=\frac{OB}{OD}\)và \(\frac{NH}{HP}=\frac{OC}{OA}\)mà \(\frac{OB}{OD}=\frac{OC}{OA}\)

=> \(\frac{MK}{KP}=\frac{NH}{HP}\)do đó KH//MN

Các tứ giác MKHF và EKHN là hình bình hành nên 

MF=HK và EN=KH => MF=EN

Do đó: ME=NF (đpcm)

2 tháng 3 2020

B C A D O M N E F T U V

Kẻ MT // BD, T \(\in\)AD

Gọi giao điểm của MT và AC là U, giao điểm của NT và BD là V

Xét \(\Delta ABD\)có : MT // BD \(\Rightarrow\frac{AM}{AB}=\frac{AT}{AD}\)( Định lí Ta-lét )

Mà \(\frac{AM}{AB}=\frac{CN}{CD}\)( gt ) \(\Rightarrow\frac{AT}{AD}=\frac{CN}{CD}\)

Áp dụng định lí Ta-lét đảo trong \(\Delta ACD\)có \(\frac{CN}{CD}=\frac{AT}{AD}\)( cmt ) \(\Rightarrow\)NT // AC

Áp dụng định lí Ta-lét trong các tam giác :

+) \(\Delta AOB\)có MU // BO ( MT // BD; U\(\in\)MT; O \(\in\)BD ) \(\Rightarrow\frac{MU}{BO}=\frac{AM}{AB}\)(1)

+) \(\Delta OCD\)có VN // OC ( NT // AC; V \(\in\)NT; O \(\in\)AC ) \(\Rightarrow\frac{VN}{OC}=\frac{VD}{OD}\)(2)

+) \(\Delta OAD\)\(\orbr{\begin{cases}UT//OD\Rightarrow\frac{UT}{OD}=\frac{AT}{ÀD}\Rightarrow\frac{UT}{OD}=\frac{AM}{AB}\left(3\right)\\VT//OA\Rightarrow\frac{VT}{OA}=\frac{VD}{OD}\left(4\right)\end{cases}}\)

+) \(\Delta MNT\)\(\orbr{\begin{cases}EU//NT\left(AC//NT;E,U\in AC\right)\Rightarrow\frac{MU}{UT}=\frac{ME}{EN}\left(5\right)\\FV//MT\left(BD//MT;F,V\in BD\right)\Rightarrow\frac{VN}{VT}=\frac{FN}{FM}\left(6\right)\end{cases}}\)

Từ (1) (3) \(\Rightarrow\frac{MU}{OB}=\frac{UT}{OD}\Rightarrow\frac{MU}{UT}=\frac{OB}{OD}\)

Từ (2) (4) \(\Rightarrow\frac{VN}{OC}=\frac{VT}{OA}\Rightarrow\frac{VN}{VT}=\frac{OC}{OA}\)

Áp dụng hệ quả định lí Ta-lét trong \(\Delta OAD\)và \(\Delta OBC\)có BC // AD ( gt ) \(\Rightarrow\frac{OC}{OA}=\frac{OB}{OD}\)

\(\Rightarrow\frac{MU}{UT}=\frac{VN}{VT}\)kết hợp với điều (5) (6) \(\Rightarrow\frac{ME}{EN}=\frac{FN}{MF}\Rightarrow ME\cdot MF=FN\cdot EN\)

\(\Rightarrow ME\cdot\left(ME+EF\right)=FN\cdot\left(FN+EF\right)\Rightarrow ME^2+ME\cdot EF=FN^2+FN\cdot EF\)

\(\Rightarrow ME^2+ME\cdot EF-FN^2-FN\cdot EF=0\)\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN\right)+EF\cdot\left(ME-FN\right)=0\)

\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN+EF\right)=0\)

Vì các cạnh ME, FN, EF luôn lớn hơn 0 \(\Rightarrow\)không có trường hợp ME + FN + EF = 0

\(\Rightarrow ME-FN=0\Leftrightarrow ME=FN\)

28 tháng 2 2020

CÁI XANH XANH KIA LÀ GÌ VẬY???

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0