Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(ABC\):
\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)
suy ra \(MN=\frac{1}{2}BC,MN//BC\).
Xét tam giác \(DBC\):
\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)
suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).
Suy ra \(PQ=MN,PQ//MN\)
nên \(MNPQ\)là hình bình hành.
b) - \(MNPQ\)là hình thoi.
\(MNPQ\)là hình thoi suy ra \(MN=NP\).
Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)
do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân.
- \(MNPQ\)là hình chữ nhật.
\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).
Chứng minh tương tự ý a) ta cũng có \(NP//AD\)
suy ra \(BC\perp AD\).
- \(MNPQ\)là hình vuông.
\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.
Ta có: M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình của tam giác ABC
=> MN=1/2 BC (1)
Ta có: Q là trung điểm BD
P là trung điểm CD
=> QP là đường trung bình của tam giác DBC
=> QP=1/2 BC (2)
Từ (1) và (2) suy ra MN = QP (*)
Ta có: M là trung điểm AB
Q là trung điểm BD
=> MQ là đường trung bình của tam giác ABD
=> MQ=1/2 AD (3)
Ta có: N là trung điểm AC
P là trung điểm CD
=> NP là đường trung bình của tam giác CAD
=> NP=1/2 AD (4)
Từ (3) và (4) suy ra MQ=NP (**)
Từ (*) và (**) suy ra MNPQ là hình bình hành
a / hình bình hành
b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD
c/hình vuông
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
A B C D M N P Q
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
Bạn tự vẽ hình nha ^^ :
a ) Nối A với C , B với D :
Xét \(\Delta\)ABD ta có :
QM là đường trung bình của tam giác ( AQ=QA , AM=MB)
=>QM//BD (1)
chứng minh tương tự với \(\Delta\)BDC ta có :
PN//BD (2)
Từ (1)(2) => QM//PN (*)
chứng minh tương tự với hai tam giác ABC và DAC ta có :
QP // MN (**)
từ (*)(**) => tứ giác MNPA là hình bình hành
b) hình thành cận thị ????
c) đang làm cúp điện ^^