K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha ^^ :
a ) Nối A với C , B với D :
Xét \(\Delta\)ABD ta có :
QM là đường trung bình của tam giác ( AQ=QA , AM=MB)
=>QM//BD (1)
chứng minh tương tự với \(\Delta\)BDC ta có :
PN//BD (2)
Từ (1)(2) => QM//PN (*)
chứng minh tương tự với hai tam giác ABC và DAC ta có :
QP // MN (**)
từ (*)(**) => tứ giác MNPA là hình bình hành 
b) hình thành cận thị ???? 
c) đang làm cúp điện ^^
 

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\):

\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)

suy ra \(MN=\frac{1}{2}BC,MN//BC\).

Xét tam giác \(DBC\):

\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)

suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).

Suy ra \(PQ=MN,PQ//MN\)

nên \(MNPQ\)là hình bình hành. 

b) - \(MNPQ\)là hình thoi. 

 \(MNPQ\)là hình thoi suy ra \(MN=NP\).

Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)

do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân. 

\(MNPQ\)là hình chữ nhật.

\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).

Chứng minh tương tự ý a) ta cũng có \(NP//AD\)

suy ra \(BC\perp AD\).

\(MNPQ\)là hình vuông.

\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật. 

7 tháng 12 2014

Ta có: M là trung điểm AB

          N là trung điểm AC

=> MN là đường trung bình của tam giác ABC

=> MN=1/2 BC (1)

Ta có: Q là trung điểm BD

          P là trung điểm CD

=> QP là đường trung bình của tam giác DBC

=> QP=1/2 BC (2) 

Từ (1) và (2) suy ra MN = QP (*)

Ta có: M là trung điểm AB

          Q là trung điểm BD

=> MQ là đường trung bình của tam giác ABD

=> MQ=1/2 AD (3)

Ta có: N là trung điểm AC

          P là trung điểm CD

=> NP là đường trung bình của tam giác CAD

=> NP=1/2 AD  (4)

Từ (3) và (4) suy ra MQ=NP (**)

Từ (*) và (**) suy ra MNPQ là hình bình hành

10 tháng 2 2016

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

10 tháng 2 2016

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

19 tháng 12 2017

A B C D M N P Q

Tam giác BCD có :

BN = NC ( gt )

DP = PC ( gt )

\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )

Tam giác ADB có :

AQ = QD ( gt )

AM = MB ( gt )

\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )

Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM

\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )

c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau 

6 tháng 3 2020

các bạn giúp mình nhé mai mình phải nộp bài rùi :((

19 tháng 6 2015

(Hình thì bạn tự vẽ nha)

a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

9 tháng 12 2016

phần c đâu