K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

15 tháng 8 2016

Từ D dóng DEABDE⊥AB, từ C dóng CEEFCE⊥EF

Ta có : DC = EF (DCEF hình chữ nhật)(tự CM nhé, dễ lắm)

DCAB=EFAB=AF+BE⇒DC−AB=EF−AB=AF+BE(1)

Xét ΔAFD(ˆF=90o)ΔAFD(F^=90o) có :

AD>AFAD>AF (n/x)

Xét ΔBEC(ˆE=90o)ΔBEC(E^=90o) có :

BC>BEBC>BE (n/x)

AF+BE<AD+BC⇒AF+BE<AD+BC(2)

Từ (1) và (2)

DCAB<AD+BC

15 tháng 8 2016

Từ D dóng DE vuông AB, từ C dóng CE vuông EF.

Ta có : DC = EF (DCEF hình chữ nhật)

Ta có : DC - AB = EF - AB = AF + BE (*)

Xét ▲AFD (90 độ) có :

AD > AF (n/x)

Xét ▲BEC (có E = 90 độ)

=> AF + BE < AD + BC (**)

Từ (*) (**) 

=> DC - AB < AD + BC

b: AD+BC>CD-AB

=>AD+AB>CD-BC

mà AD+AB>BD

và CD-BC<BD

nên AD+AB>CD-BC(ĐPCM)

a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

Do đo: ΔAHD=ΔBKC

Suy ra: DH=CK

2, Tự vẽ hình nha bạn :

Trên nửa mặt phẳng bờ \(CD\) có chứa điểm \(A\) , vẽ tia \(Cx\) sao cho \(\widehat{DCx}=\widehat{ADC}\) , \(Cx\) cắt \(AB\) tại \(E\)

Ta có : \(\widehat{DCB}< \widehat{ADC}\left(gt\right)\)

\(\Rightarrow\widehat{DCB}=\widehat{DCx}\)

\(\Rightarrow\) Tia \(CB\) nằm giữa hai tia \(CD\)\(CE\)

\(\Rightarrow\) Điểm \(B\) nằm giữa 2 điểm \(A\)\(E\)

Tứ giác : \(AECD\) có : \(AE//CD\)\(\widehat{ADC}=\widehat{DCE}\)

\(\Rightarrow\)\(AECD\) là hình thang cân

\(\Rightarrow\Delta ADE=\Delta ECA\left(c-g-c\right)\) ( TỰ CHỨNG MINH NHÉ )

\(\Rightarrow\widehat{AED}=\widehat{CAE}\)

Gọi \(O\) là giao điểm của\(AC\)\(BD\)

\(\Delta OAB\)\(\widehat{DBE}\) là góc ngoài

\(\Rightarrow\widehat{DBE}>\widehat{OAB}\)

\(\Rightarrow\widehat{DBE}>\widehat{BED}\)

\(\Delta BOE\) có : \(\widehat{DBE}>\widehat{BEC}\)

\(\Rightarrow DE>BD\)

\(DE=AC\)

\(\Rightarrow AC>BD\left(dpcm\right)\)