Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $BK$
Tứ giác $ABKH$ có $AB\parallel HK, AH\perp BK$ (cùng vuông góc với $DC$) nên $ABKH$ là hình bình hành. Mà $\widehat{AHK}=90^0$ nên $ABKH$ là hình chữ nhật.
\(\Rightarrow HK=AB\); $AH=BK$
Xét 2 tam giác vuông $ADH$ và $BCK$ có:
\(AD=BC\) (tính chất hình thang cân)
\(AH=BK\)
\(\Rightarrow \triangle ADH=\triangle BCK(ch-cgv)\)
\(\Rightarrow DH=CK\)
Mà \(DH+CK=DC-HK=DC-AB\)
\(\Rightarrow DH=\frac{DC-AB}{2}\) (đpcm)
b)
Theo phần a \(CK=DH=\frac{DC-AB}{2}=\frac{13-5}{2}=4\) (cm)
\(DK=DH+HK=DH+AB=4+5=9\) (cm)
Xét tam giác $BDK$ và $CBK$ có:
\(\widehat{BKD}=\widehat{CKB}=90^0\)
\(\widehat{BDK}=\widehat{CBK}(=90^0-\widehat{DBK})\)
\(\Rightarrow \triangle BDK\sim \triangle CBK(g.g)\Rightarrow \frac{BK}{DK}=\frac{CK}{BK}\)
\(\Rightarrow BK^2=CK.DK=4.9=36\Rightarrow BK=6\) (cm)
Áp dụng đl Pitago cho tam giác vuông $BHK$: \(HB=\sqrt{HK^2+BK^2}=\sqrt{5^2+6^2}=\sqrt{61}\) (cm)
\(S_{ABCD}=\frac{(AB+CD).BK}{2}=\frac{(5+13).6}{2}=54(cm^2)\)
________Tự vẽ hình nhé bn___________
Vì AC \( \perp\) BD = {O}
Xét \(\bigtriangleup{AOD}\) vuông tại O , áp dụng định lý Py-ta-go , có :
\(AD^2=AO^2+OD^2\) (1)
\(\bigtriangleup{AOB}\) vuông tại O , áp dụng định lý Py-ta-go , có:
\(OA^2=AB^2-OB^2\) (2)
\(\bigtriangleup{DOC}\) vuông tại O , áp dụng định lý Py-ta-go , có :
\(OD^2= CD^2-OC^2\) (3)
Từ (1), (2) và (3) có :
\(AD^2=AB^2-OB^2+CD^2-OC^2\)
\(= AB^2+CD^2-(OB^2+OC)^2\)
Áp dụng định lý Py-ta-go vào \(\bigtriangleup{BOC}\) vuông tại O có :\(OB^2+OC^2=BC^2\)
\(\Rightarrow\) \(AD^2=AB^2+CD^2-BC^2\) (4)
Từ B hạ BK \(\perp\) DC
Xét tứ giác ABKD có :
\(\widehat{BAD} = \widehat{ADK} = \widehat{DKB} = 90^0\)
\(\Rightarrow\) Tứ giác ABKD là hình chữ nhật
\(\Rightarrow\) \(AB=DK=9cm\)
\(\Rightarrow\) \(KC = DC - DK = 16 - 9 = 7cm \)
\(\Rightarrow\) AD = BK
Xét \(\bigtriangleup{BKC}\) vuông tại K có :
\(BC^2=BK ^2+KC^2\) (5)
Từ (4) và (5) có :
\(AD^2 = AB^2+CD^2\) \(- (BK^2+KC^2)\)
\(\Leftrightarrow\) \(AD^2=AB^2+CD^2-BK^2-KC^2 \) ( Vì BK = AD )
\(\Leftrightarrow\) \(AD^2=AB^2+CD^2-AD^2-KC^2\)
\(\Leftrightarrow\) \(2AD^2=AB^2+CD^2-KC^2\)
\(\Leftrightarrow\) \(2AD^2 =9^2+16^2+7^2\)
\(\Leftrightarrow\) \(2AD^2 = 81+256+49\)
\(\Leftrightarrow\) \(2AD^2 = 288\)
\(\Leftrightarrow\)\(AD^2 = 144\)
\(\Rightarrow\) AD = 12
\(S_{ABCD}\) = \(\dfrac{(AB+CD).AD}{2}\) = \(\dfrac{(9+16).12}{2}\) \(= 150 (cm^2)\)
Xét tam giác ADB và tam giác ADC có:
\(\widehat{BAD}\)=\(\widehat{ADC}\left(=90^0\right)\)
\(\widehat{ABD}=\widehat{DAC}\)(cùng phụ \(\widehat{CAB}\))
nên \(\Delta ADB\sim\Delta DCA\left(g-g\right)\)
=> \(\frac{AD}{DC}=\frac{AB}{AD}\)
<=> AD2=DC.AB=16.9=144
=>AD=12(cm) (vì AD>0