Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết làm câu a thì mình làm trước câu a thôi nha
Ta có OM // AB
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )
ON // AB
\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )
AB // CD
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)
\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)