K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

a, S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)
Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)
T­­­­ư (1) và (2) suy ra :S(ADO)=S(BOC)
b,EF//AB nênAE/AD=BF/BC
Tam giác ADC có :OE/DC=AE/AD
Tam giác BDC có :OF/DC=BF/BC
Suy ra :OE/DC=OF/DC=>OE=OF

c,Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC
=>EO/AB+EO/DC=1
=>1/AB+1/DC=1/OE
Mặt khác:EO=OF=1/2EF =>1/OE=2/EF
=>1/AB+1/DC=2/EF

chúc bạn học tốt nhé

6 tháng 3 2018

mình cần câu d cơ

Còn câu a, b, c thì dễ òi khocroi

Bài 1:a) tìm x,y,z biết\(x^2+y^2+z^2=xy+yz+zx\)\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)b) Giải phương trình\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại Fa)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOCb)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)c) Gọi K là điểm bất kì...
Đọc tiếp

Bài 1:

a) tìm x,y,z biết

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

b) Giải phương trình

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại F

a)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOC

b)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

c) Gọi K là điểm bất kì thuộc OE,nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF

Bài 3: Cho hình bình hành ABCD, vẽ đường thẳng d cắt các cạnh AB, AD tại M và K và cắt đường chéo AC tại G. CMR: \(\frac{AB}{AM}+\frac{AD}{AK}=\frac{AC}{AG}\)

TRONG BÀI 2, BÀI 3 BIẾT CÂU NÀO LÀM CÂU ĐÓ

GIÚP MÌNH BÀI HÌNH NHÉ MÌNH SẼ KẾT BẠN VÀ THƯỞNG 1 TICK/CÂU

 

0
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

7
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất 

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(2\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

15 tháng 6 2018

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

22 tháng 8 2017

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.