K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi Od là phân giác của \(\widehat{AOB}\)

Vì \(\widehat{\text{B'}}\) đối xứng với \(\widehat{B}\) qua Od\(\Rightarrow OB'=OB.\widehat{B'Od}=\widehat{dOB}\)

\(\Rightarrow\widehat{B'Od}=\widehat{AOd}\)(vì Od là phân giác của góc O)

\(\Rightarrow O,B',A\)thẳng hàng.

Tương tự\(\rightarrow O,B',A\)thẳng hàng\(\rightarrow OA=OA'\)

Vì AA'\(\perp\)Od,BB'\(\perp\)Od,\(\rightarrow AA'//BB'\)vì A,A' đối xứng qua Od;B,B' đối xứng qua Od

Ta có:\(AB//CD\rightarrow\frac{OA}{OC}=\frac{OB}{OD}\)

\(\rightarrow\frac{OA}{OC+OA}=\frac{OB}{OD+OB}\)

\(\rightarrow\frac{CA}{DB}=\frac{OA}{OB}=\frac{OA}{OB'}\)

\(\rightarrow\frac{CA}{DB}=\frac{AA'}{BB'}\)\(AA'//BB'\left(\perp Od\right)\)

\(\widehat{OAA'}=90^o-\frac{1}{2}\widehat{AOA'}=90^o-\frac{1}{2}\widehat{B'OB}\)

\(=\widehat{B'OB}\left(OA=OA',OB=OB'\right)\)

\(\Delta CAA'~\Delta BDB'\left(g.g\right)\)

\(\Rightarrow\widehat{ACA'}=\widehat{BDB'}\)

11 tháng 6 2018

Hình:

Ôn tập cuối năm phần số học

Giải:

a) Ta có:

\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)

Nên tứ giác BMCO là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)

Tương tự, tứ giác OCND là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)

Suy ra tứ giác BMND là hình bình hành

b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD

Đồng thời BM//AC

Nên AC⊥BD

c) Vì BMCO là hình bình hành nên MC//BD (3)

Và BMND là hình bình hành nên MN//BD (4)

Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)

Vậy ...

17 tháng 4 2017

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: Xét tứ giác BOCM có

I là trung điểm chung của BC và OM

=>BOCM là hbh

=>OC//BM và OC=BM

Xét tứ giác DOCN có

K là trung điểm chung của DC và ON

=>DOCN là hbh

=>DN//OC và DN=OC

=>DN//BM và DN=BM

=>BDNM là hbh

c: BO//CM

NC//DO

mà B,O,D thẳng hàng

nên M,C,N thẳng hàng

21 tháng 11 2018

O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC

23 tháng 9 2016

Xét tứ giác OBMC ta có

2 đường chéo BC và OM cắt nhau tại I

I là trung điểm BC (gt)

I là trung điểm OM ( M là điểm đối xứng của O qua I)

-> tứ giác OBMC là hbh 

cmtt tứ giác ODNC là hbh

ta có

BM // OC ( OBMC là hbh)

DN // OC (ODNC là hbh)

-.> BM//CN

ta có 

BM // OC ( OBMC là hbh)

DN // OC (ODNC là hbh)

-.> BM//CN // OC

ta có 

BM = OC ( OBMC là hbh)

DN = OC (ODNC là hbh)

-.> BM  = ON

Xét tứ giác BMND ta có

BM // ON (cmt)

BM = ON (cmt)

-> tứ giác BMND là hbh

b) giả sử BMND là hcn

ta có

MB vuông góc BD ( BNMD là hcn)

BM // OC ( OBMC là hbh)

-> BD vuông góc OC tại O

Vậy AC vuông góc BD thì BMND là hcn

c) ta có 

BD // CM ( OB // CM ; O thuộc BD)

BD // CN ( OD //CN . O thuộc BD)

-> CM trùng CN

-> C,N,M thẳng hàng

21 tháng 4 2017

Bài giải:

Hai tam giác BOM và DON có

ˆB1B1^ = ˆD1D1^ (so le trong)

BO = DO (tính chất)

ˆO1O1^ = ˆO2O2^ (đối đỉnh)

nên ∆BOM = ∆DON (g.c.g)

Suy ra OM = ON.

O là trung điểm của MN nên M đối xứng với N qua O