K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

                          A B O C D

Vì ABCD là hình thang \(\Rightarrow AB//CD\)\(\Rightarrow\widehat{OAB}=\widehat{OCD}\)\(\widehat{OBA}=\widehat{ODC}\)( so le trong )

Xét \(\Delta AOB\)và \(\Delta COD\)ta có:

+) \(\widehat{AOB}=\widehat{COD}\)( đối đỉnh )

+) \(\widehat{OAB}=\widehat{OCD}\)( chứng minh trên )

+) \(\widehat{OBA}=\widehat{OCD}\)( chứng minh trên )

\(\Rightarrow\Delta AOB~\Delta COD\)\(g.g.g\) ) ( đpcm ) 

17 tháng 9 2024

10 năm r

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

a) Vì ABCD là hình thang cân 

=> AD = BC

=> ADC = BCD 

=> AC = BD 

=> DAB = CBA 

Xét ∆ADC và ∆BCD ta có : 

AD = BC 

ADC = BCD 

DC chung 

=> ∆ADC = ∆BCD (c.g.c)

=> BDC = ACD ( tương ứng) 

=> ∆DOC cân tại O.

b) Mà DAB + BAE = 180° ( kề bù) 

ABC + ABE = 180° ( kề bù )

Mà DAB = CBA 

=> EAB = EBA 

=> ∆EAB cân tại E 

Gọi giao điểm AB và EO là H

EO và DC là G

Mà AB//CD 

=> BAC = ACD ( so le trong) 

=> ABD = ACD ( so le trong) 

Mà ACD = BDC 

=> CAB = ABD 

=> ∆ABO cân tại O 

=> EO là trung trực và là phân giác ∆AOB 

=> AOH = BOH ( phân giác )

Mà AOH = COG ( đối đỉnh) 

BOH = DOG ( đối đỉnh) 

Mà AOH = BOH ( EO là phân giác) 

=> OG là phân giác DOC 

Mà ∆DOC cân tại O

=> OG là trung trực DC

Hay EO là trung trực DC

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

d: OA+OC=AC

OB+OD=BD

mà OA=OC và AC=BD

nên OC=OD

OC=OD

EC=ED

=>OE là trung trực của CD

=>O,E,trung điểm của CD thẳng hàng

16 tháng 6 2017

A B C D O F E

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: \(\frac{OF}{OB}=\frac{AO}{OC}\)

Tương tự ta có: \(\frac{OE}{OA}=\frac{OB}{OD}\) mà AB // CD nên \(\frac{OB}{OA}=\frac{OA}{OC}\)

Từ đó suy ra \(\frac{OE}{OA}=\frac{OF}{OB}\Rightarrow\) EF // AB.

b) Do AB // EF nên \(\frac{EF}{AB}=\frac{OF}{OB}=\frac{OA}{OC}=\frac{AB}{CD}\Rightarrow\frac{EF}{AB}=\frac{AB}{CD}\Rightarrow AB^2=EF.CD\)

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên \(\frac{S_{OAB}}{S_{OBC}}=\frac{OA}{OC}\Rightarrow\frac{S_1}{S_4}=\frac{OA}{OC}\)

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên \(\frac{S_{OAD}}{S_{ODC}}=\frac{OA}{OC}\Rightarrow\frac{S_3}{S_2}=\frac{OA}{OC}\)

Vậy thì \(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\left(đpcm\right)\)

ABCDOFE

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: OFOB =AOOC 

Tương tự ta có: OEOA =OBOD  mà AB // CD nên OBOA =OAOC 

Từ đó suy ra OEOA =OFOB ⇒ EF // AB.

b) Do AB // EF nên EFAB =OFOB =OAOC =ABCD ⇒EFAB =ABCD ⇒AB2=EF.CD

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên SOABSOBC =OAOC ⇒S1S4 =OAOC 

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên SOADSODC =OAOC ⇒S3S2 =OAOC 

Vậy thì S1S4 =S3S2 ⇒S1.S2=S3.S4(đpcm)