Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD:
E là trung điểm AD
F là trung điểm BC
=> EF là đường trung bình ABCD
=> EF//AB//CD và EF =\(\frac{CD+AB}{2}\)=\(\frac{14}{2}\)=7(cm)
Xét tam giác ADC:
EG//CD
E là trung điểm AD
=>G là trung điểm AC
Tiếp tục xét tam giác ACD
Ta có: E là trung điểm AD
G là trung điểm AC
=> EG là đường trung bình tam giác ACD
=> EG//CD và EG=\(\frac{1}{2}\)CD=4(cm)
Ở dạng bài này thì chỉ áp dụng chủ yếu đường trung bình của tam giác và đường trung bình của hình thang là sẽ ra thôi bạn.
+) Hình thang ABCD có M;N là trung điểm của AD; BC => MN là đường trung bình của hình thang
=> MN // AB//CD và MN = (AB + CD) /2 = 10 cm
+) Xét tam giác ABD có: M là trung điểm của AD; MI // AB
=> I là trung điểm của DB
=> MI là đường trung bình của tam giác ABD => MI = AB?2 = 6/2 = 3cm
+) Xét tam giác CAB có: N là trung điểm của BC; NK //AB => K là trung điểm của AC
=> NK là đường trung bình của tam giác ABC
=> NK = AB / 2 = 6/2 = 3 cm
+) MN = MI + IK + KN = 3 + IK + 3 = 6 + IK = 10 => IK = 4 cm
Bài này khá dễ nhưng cũng nên vẽ hình nha
Cho hình thang ABCD có AD//BC------
AD+BC=AB--------------------------------
M là trung điểm CD =>CM=MD--------
Rùi tới đây làm bài------------------------
Ta cho 1 điểm mới tạm gọi N là trung điểm AB thì nối MN ta được đường trung bình hình thang ABCD-------------------------
NA=NB=\(\frac{AB}{2}\)------------------------------
NM=\(\frac{AD+BC}{2}\)=\(\frac{AB}{2}\)------------------------
Mà trong ΔAMB thì MN chính là trung tuyến----------------------------------------
NA=NB=NM=\(\frac{AB}{2}\)=>ΔAMB ⊥ tại M
=>góc AMB=90ĐỘ
CD=14cm