K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(AB//CD\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=2\widehat{C}\Leftrightarrow2\widehat{B}=180^0\)

\(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=45^0\)

\(\widehat{A}+\widehat{D}=180^0\)

Mà \(\widehat{A}=\widehat{D}+40\Rightarrow\widehat{A}=70,\widehat{D}=110\)

3 tháng 7 2015

a) từ I kẻ HI//AB//DC

=> GÓC HID= GÓC IDC ( SLT)

MÀ IDC=IDH => GÓC HID=GÓC IDH => TAM GIÁC HID CÂN TẠI H => HD=HI

TƯƠNG TỰ CHỨNG MINH TAM GIÁC HIA CÂN TẠI H => HI=HA

=> HA=HD => H LÀ TRUNG ĐIỂM AD

MÀ HI//AC//CD => I PHẢI LÀ TRUNG ĐIỂM BC

=> HI LÀ ĐTB CỦA HÌNH THANG

=> HI= (AB+CD)/2 (1)

MẶT KHÁC TRONG TAM GIÁC IAD: 

GÓC ADI + GÓC IDA=1/2 GÓC A +1/2 GÓC D=1/2 (A+D)=1/2 180=90 ( ABCD LÀ HÌNH THANG => A+D=180)

=> TAM GIÁC ADI VUÔNG TẠI I. HI LÀ TRUNG TUYẾN => HI=AD/2 (2)

TỪ (1;2) => ĐPCM

B) GỌI PG GÓC A CẮT PG GÓC D TẠI I

TỪ I TA KẺ HI//AB//CD (H THUỘC AD) 

=> .... ( ĐẾN ĐÂY C/M NHƯ TRÊN ĐỂ => H LÀ TĐ CỦA AD, TAM GIÁC ADI VUÔNG)

=> HI= AD/2.

TA CÓ: AD=AB+CD => HI=AB+CD/2 HAY HI= NỬA TỔNG 2 ĐÁY

H LÀ TRUNG ĐIỂM AD, HI//AB//CD. HI = NỬA TỔNG HAI ĐÁY => I PHẢI LÀ TRUNG ĐIỂM BC => AI CẮT DI TẠI I THUỘC BC

 

23 tháng 8 2017

a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD 

Ta có : AB//CD (gt) => E = A1 (so le trong)

 Mà A1 =A2 (gt) 

Nên A2 = E 

Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến 

=>AM= EM 

Chứng minh tương tự, ta được : 

BN = FN 

Xét hình thang ABEF có : AM=BN(cm trên) 

BN=FN(cm trên) 

Do đó MN là đường TB của HÌNH thang ABEF 

=> MN= \(\frac{EF+AB}{2}\)

MN//AB//EF Vậy MN// CD(đpcm) 

b)Do ED= AD; BC=FC 

Mà ED + DC + CF = EF 

Nên AD + DC + BC = EF 

Lại có MN \(\frac{EF+AB}{2}\)(CM trên) 

Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)

26 tháng 7 2022

Hình như bạn sai rồi. Tại sao ED + DC + CF lại bằng EF? Ý bạn là DE + EC + CF?