Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác abd có
am=md;bn=nd
=>mn là đường trung bình của tam giác abd
=>mn//ab(1)
tương tự vói tam giác bcd ta có
nq//cd(2)
mà ab//cd(3)
từ (1);(2) và (3) suy ra m;n;q thẳng hàng(*)
tam giác abc có
ap=pc;bq=cq
=>pq là đường trung bình của tam giác abc
=>pq/ab(4)
từ (1);(2) và (4) suy ra m;p;q thẳng hàng(**)
từ (*) và (**) suy ra m;n;p;q thảng hàng
A B C D M N
Trả lời
Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\) là đường trung bình của hình thang
\(\Rightarrow ABCD\)là hình thang ( đpcm )
Thông cảm nha mọi người
tôi sẽ vẽ lại hình cho nha
N A B C D M
Study well
A B C D I K O
\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)
\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)
\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)
\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)
\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)
Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html
Ta có hình vẽ(hơi xấu tí,chỉ minh họa thôi ha) A B C D P Q K Gọi K là trung điểm của BD
Theo tính chất đường trung bình trong tam giác ,ta có:
tam giác ABD có PA=PB;KB=KD
=>PK là đường trung bình của tam giác ABD=>\(PK=\frac{1}{2}AD\)(1)
Tượng tự với tam giác BDC ta có:\(KQ=\frac{1}{2}BC\)(2)
Theo BĐT tam giác ta có :
tam giác PKQ có: \(PK+KQ>PQ\)
từ (1) và (2)=>\(PQ< \frac{AD+BC}{2}\left(đpcm\right)\)