Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đoạn thẳng AC nối hai điểm A và C. Gọi O là giao điểm của đoạn thẳng AC và đoạn thẳng EF. Theo đề bài, do EF//AB và EF//CD nên áp dụng định lý Talet trong tam giác, ta có:
Xét tam giác ABC:\(\frac{FC}{FB}=\frac{OC}{OA}\)(1)
Xét tam giác ACD:\(\frac{OC}{OA}=\frac{ED}{AD}\)(2)
Từ (1) và (2), suy ra \(\frac{ED}{AD}=\frac{FC}{BC}\)(đpcm)
A B C D E F O
Gọi giao điểm của AC và EF là O
Xét tam giác ABC có:OF//AB ( EF//AB)
\(\Rightarrow\frac{FC}{BC}=\frac{OC}{AC}\)( định lý Ta-let ) (1)
Xét tam giác ADC có OE//DC ( EF//DC)
\(\Rightarrow\frac{ED}{AD}=\frac{OC}{AC}\)( định lý Ta-let ) (2)
Từ (1) và (2) \(\Rightarrow\frac{FC}{BC}=\frac{ED}{AD}\left(đpcm\right)\)
Hình chỉ mạng tính chất minh họa
A B D C E F G Gọi G là giao điểm của EF và AC
Xét ΔACD có EG//CD(EF//CD)
\(\Rightarrow\dfrac{ED}{AD}=\dfrac{IC}{AC}\)(định lí talét)
Xét ΔACB có FG//AB(EF//AB//CD)
\(\Rightarrow\dfrac{IC}{AC}=\dfrac{FC}{BC}\)(định lí talét)
\(\Rightarrow\dfrac{ED}{AD}=\dfrac{FC}{BC}\)(đpcm)
Đúng thì tick nha,
Bạn tự vẽ lấy hình nha
gọi AC và EF cắt nhau tại I
Ta có : EO // DC ( Vì EF // DC )
Theo định lý Ta let:
\(\frac{ED}{AD}=\frac{OC}{AC}\)
\(\frac{BF}{BC}=\frac{AO}{AC}\)
\(\Rightarrow\)\(\frac{ED}{AD}+\frac{BF}{BC}=\frac{OC}{AC}+\frac{AO}{AC}=1\)
Vậy \(\frac{ED}{AD}=\frac{BF}{AC}=1\left(ĐPCM\right)\)
Gọi O là giao điểm của AC và EF
Xét tam giác ADC có EO //DC
=>AE/AD=AO/AC. (1)
Xét tg ABC có OF//DC
=>CF/CB=CO/CA. (2)
Từ 1 và 2=>AE/AD+CF/CB=AO/AC+CO/CA=AO+CO/AC=AC/AC=1(đpcm)
Xét hình thang ABCD có EF//AB//CD
nên AE/ED=BF/FC
=>6/FC=2
hay FC=3(cm)
bn tham khảo ở đây
https://olm.vn/hoi-dap/tim-kiem?id=248114724967&id_subject=1&q=+++++++++++Cho+h%C3%ACnh+thang+ABCD+(+AB+//+CD),+m%E1%BB%99t+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+song+song+v%E1%BB%9Bi+%C4%91%C3%A1y+c%E1%BA%AFt+c%E1%BA%A1nh+b%C3%AAn+AD,+BC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+E+v%C3%A0+F.Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+EDAD+=FCBC+++++++++++
Câu hỏi của Mori Ran - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo