K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDAB có 

M là trung điểm của AD

P là trung điểm của BD

Do đó: MP là đường trung bình của ΔDAB

Suy ra: MP//AB

Xét ΔADC có 

Q là trung điểm của AC

M là trung điểm của AD

Do đó: QM là đường trung bình của ΔADC

Suy ra: QM//DC

hay QM//AB

Xét ΔACB có 

N là trung điểm của BC

Q là trung điểm của AC

Do đó: NQ là đường trung bình của ΔACB

Suy ra: NQ//AB

Ta có: NQ//AB

QM//AB

mà NQ và QM có điểm chung là Q

nên N,Q,M thẳng hàng(1)

Ta có: MP//AB

MQ//AB

mà MP và MQ có điểm chung là M

nên M,P,Q thẳng hàng(2)

Từ (1) và (2) suy ra M,N,P,Q thẳng hàng

16 tháng 4 2017

a) HS tự chứng minh hình thang ABPN có hai đường chéo bằng nhau là hình thang cân.

c) Cần thêm điều kiện NP = AB suy ra DC = 3AB

5 tháng 9 2017

a) hình thang ABCD có :

AM = MD ( gt )

BN = NC ( gt )

\(\Rightarrow\)MN - đtb httg ABCD

\(\Rightarrow\)MN // AB // CD   ( 1 )

t/g ABD có :

AM = MD ( gt )

BQ = QD ( gt )

\(\Rightarrow\)MQ - đtb t/g ABD

\(\Rightarrow\)MQ // AB   ( 2 )

t/g ACD có :

AM = MD ( gt )

AP = PC ( gt )

\(\Rightarrow\)MP - đtb t/g ACD

\(\Rightarrow\)MP // CD   ( 3 )

Từ ( 1 ) ; ( 2 ) ; ( 3 ) suy ra M , N , P , Q thẳng hàng

b)  \(MP=\frac{CD}{2}\)    ( Vì MP - đtb t/g ACD )

\(MQ=\frac{AB}{2}\)   ( Vì MQ - đtb t/g ABD )

\(\Rightarrow\)\(MP-MQ=\frac{CD-AB}{2}\)

\(\Rightarrow\)\(PQ=\frac{CD-AB}{2}\)

5 tháng 9 2017

tự vẽ hình :)

26 tháng 6 2018

giúp vs

13 tháng 12 2019

GIÚP VỚI

20 tháng 10 2023

a: Xét ΔDAB có M,N lần lượt là trung điểm của DA,DB

=>MN là đường trung bình

=>MN//AB và \(MN=\dfrac{AB}{2}\)

Xét ΔCAB có P,Q lần lượt là trung điểm của CA,CB

=>PQ là đường trung bình

=>PQ//AB và \(PQ=\dfrac{AB}{2}\)

Xét hình thang ABCD có

M,Q lần lượt là trung điểm của AD,BC

=>MQ là đường trung bình

=>MQ//AB//CD và \(MQ=\dfrac{AB+CD}{2}\)

MQ//AB

MN//AB

Do đó: M,N,Q thẳng hàng(1)

PQ//AB

MQ//AB

Do đó: M,P,Q thẳng hàng(2)

Từ (1),(2) suy ra M,N,P,Q thẳng hàng

b: Gọi O là giao của AC và BD

Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\widehat{OBA}=\widehat{OAB}\)

=>OA=OB

OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

Xét ΔOCD có NP//DC
nên \(\dfrac{ON}{OD}=\dfrac{OP}{OC}\)

mà OD=OC

nên ON=OP

ON+OB=BN

OA+OP=AP

mà ON=OP và OA=OB

nên BN=AP

Xét hình thang ABPN có PA=BN

nên ABPN là hình thang cân