K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

mình cần gấp á 

a: Xét tứ giác ADCE có 

I là trung điểm của AC

I là trung điểm của DE

Do đó: ADCE là hình bình hành

mà AD=CD

nên ADCE là hình thoi

1: BC=5cm

Xét ΔABC có

D là trung điểm của AB

M là trung điểm của BC

Do đó: DM là đường trung bình

=>DM=AC/2=2(cm)

2: Xét tứ giác ACME có 

ME//AC

ME=AC

Do đó: ACME là hình bình hành

Xét tứ giác AEBM có

D là trung điểm của ME

D là trung điểm của AB

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

13 tháng 11 2019

A B C D I E 1 1 2

a) Xét tứ giác ADCE có:

I là trung điểm AC (gt), I là trung điểm DE(gt),. AC giao DE tại I (h.vẽ)

\(\Rightarrow ADCE\)là hbh 

b) Để\(ADCE\)là hình thoi

\(\Leftrightarrow AD=DC\)

\(\Rightarrow\Delta ADC\)là tam giác cân tại D 

\(\Rightarrow\widehat{A1}=\widehat{C1}\left(1\right)\)

Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{A}=90^0\left(2\right)\)

Vì tam giác ABC vuông ở A nên \(\widehat{B}+\widehat{C1}=90^0\)( 2 góc phụ nhau ) (3)

Từ (1) và (3) \(\Rightarrow\widehat{B}+\widehat{A1}=90^0\)(4)

Từ (2) và (4) \(\Rightarrow\widehat{B}=\widehat{A2}\)

\(\Rightarrow\Delta ABD\)cân ở D

\(\Rightarrow BD=AD\)mà AD=DC

\(\Rightarrow AD=\frac{1}{2}BC\)

Xét tam giác ABC vuông ở A có: \(AD=\frac{1}{2}BC\)

\(\Rightarrow AD\)là đường trung tuyến của tam giác ABC

\(\Rightarrow D\)là trung điểm của BC.

Vậy D phải ở vị trí là trung điểm của BC thì \(ADCE\)là hình thoi.

+) Áp dụng định lý Py-ta-go vào tam giác ABC vuông ở A ta được:

\(AB^2+AC^2=BC^2\)

\(5^2+12^2=BC^2\)

\(169=BC^2\)

\(\Rightarrow BC=13\)mà \(DC=\frac{1}{2}BC\)( D là TĐ BC)

\(\Rightarrow DC=\frac{1}{2}.13=6,5\)

Vậy khi đó cạnh hình thoi ADCE là =6,5cm

13 tháng 11 2019

A C B E D I

a) Xét tứ giác ADCE có: IA = IC (gt)

   ID = IE (gt)

=> tứ giác ADCE là hình bình hành

b) Để hình bình hành ADCE là hình thoi

<=> AD = DC 

<=> t/giác DAC cân tại D

<=> \(\widehat{DAC}=\widehat{DCA}\)  

Do \(\widehat{B}+\widehat{BCA}=90^0\)

   \(\widehat{BAD}+\widehat{DAC}=90^0\)

 => \(\widehat{B}=\widehat{BAD}\)  <=> t/giác ABD cân tại D

<=> BD = AD (cùng = AD)

<=> D là trung điểm của BC

Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A

Ta có: BC2 = AB2 + AC2

=> BC2 = 52 + 122 = 25 + 144 = 169

=> BC = 13 (cm)

Do D là trung điểm của BC
=> BD = DC = 1/2BC = 1/2.13 = 6,5(cm)

Vậy ...

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên AM=BM=CM=BC/2

Xét tứ giác AMBE có 

D là trung điểm của đường chéo AB

D là trung điểm của đường chéo ME

Do đó: AMBE là hình bình hành

mà AM=BM

nên AMBE là hình thoi