Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác EBD và DBC có chung đáy BD
S_EBD = 1/2 S_ABD (đáy ED =1/2 đáy AB) = 1/2 S_BDC (Vì S_ABD = S_BCD vì đều bằng = 1/2 S_ABC)
=> chiều cao đỉnh E đáy BD = 1/2 chiều cao đỉnh C đáy BD
Xét tam giác EKD và DKC có chung đáy DK mà chiều cao đỉnh E = 1/2 chiều cao đỉnh C => S_EKD = 1/2 S_DKC
Mặt khác 2 tam giac này có chung chiều cao hạ từ đỉnh D => đáy KE = 1/2 đáy CK
Vậy KE = 21 : (2+1) = 7 (cm)
CK = 21 - 7 = 14 (cm)
Đáp số:14 cm
a/ Xét tg ABD và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABD}}{S_{ABC}}=\frac{AD}{AC}=\frac{1}{3}\)
b/
Xét tg AED và tg ABD có chung đường cao từ D->AB nên
\(\frac{S_{AED}}{S_{ABD}}=\frac{AE}{AB}=\frac{2}{3}\Rightarrow S_{ABD}=\frac{3xS_{AED}}{2}\)
Mà \(\frac{S_{ABD}}{S_{ABC}}=\frac{1}{3}\Rightarrow S_{ABC}=3xS_{ABD}=\frac{3x3xS_{AED}}{2}=\frac{9x8}{2}=36cm^2\)
c/
Ta có \(\frac{AE}{AB}=\frac{2}{3}\Rightarrow\frac{BE}{AB}=\frac{1}{3}\) và \(\frac{AD}{AC}=\frac{1}{3}\Rightarrow\frac{AD}{CD}=\frac{1}{2}\)
Xét tg BDE và tg ABD có chung đường cao từ D->AB nên
\(\frac{S_{BDE}}{S_{ABD}}=\frac{BE}{AB}=\frac{1}{3}\Rightarrow S_{BDE}=\frac{S_{ABD}}{3}\)
Xét tg ABD và tg BCD có chung đường cao từ B-> AC nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AD}{CD}=\frac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}\)
Xét tg BDE và tg BCD có chung BD nên
\(\frac{S_{BDE}}{S_{BCD}}=\) đường cao từ E->BD / đường cao từ C->BD \(=\frac{\frac{S_{ABD}}{3}}{2xS_{ABD}}=\frac{1}{6}\)
Xét tg DEG và tg CDG có chung DG nên
\(\frac{S_{DEG}}{S_{CDG}}=\)đường cao từ E->BD / đường cao từ C->BD \(=\frac{1}{6}\)
Hai tg này có chung đường cao từ D->CE nên
\(\frac{S_{DEG}}{S_{CDG}}=\frac{EG}{CG}=\frac{1}{6}\)