K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(AA'C'C\) là hình chữ nhật

\(\left. \begin{array}{l} \Rightarrow AC\parallel A'C'\\A'C' \subset \left( {A'C'B} \right)\end{array} \right\} \Rightarrow AC\parallel \left( {A'C'B} \right)\)

\(ABC'D'\) là hình bình hành

\(\left. \begin{array}{l} \Rightarrow AD'\parallel BC'\\BC' \subset \left( {A'C'B} \right)\end{array} \right\} \Rightarrow AD'\parallel \left( {A'C'B} \right)\)

Ta có:

\(\left. \begin{array}{l}AC\parallel \left( {A'C'B} \right)\\AD'\parallel \left( {A'C'B} \right)\\AC,A{\rm{D}}' \subset \left( {AC{\rm{D}}'} \right)\end{array} \right\} \Rightarrow \left( {AC{\rm{D}}'} \right)\parallel \left( {A'C'B} \right) \Rightarrow \left( {\left( {AC{\rm{D}}'} \right),\left( {A'C'B} \right)} \right) = {0^ \circ }\)

b) Ta có:

\(\left. \begin{array}{l}AB\parallel A'B'\\A'B' \subset \left( {A'B'C'D'} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {A'B'C'D'} \right) \Rightarrow \left( {AB,\left( {A'B'C'D'} \right)} \right) = {0^ \circ }\)

15 tháng 11 2019

Đáp án A.

Vẽ DH ⊥ A'C

Ta có: 

Vậy góc giữa hai mặt phẳng (BA'C) và (DA'C) là góc  B H D ^

Trong ∆ A'DC vuông tại D 

Trong  ∆ HBD có 

Suy ra góc giữa hai mặt phẳng (BA'C) và (DA'C) là góc 60°.

22 tháng 2 2021

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

12 tháng 5 2021

D là hình chiếu vuông góc của D'D trên (ABCD)(ABCD).

\Rightarrow \Delta ACDΔACD là hình chiếu vuông góc của \Delta ACD'ΔACD trên mặt phẳng (ABCD)(ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}}cosα=SACDSACD với \alphaα là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right.DA2+DC2=3DC2+DD2=4DA2+DD2=5DA2=2DC2=1DD2=3.

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2SACD=21.DA.DC=22.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2SACD=211.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}cosα=112.

16 tháng 3 2018

13 tháng 12 2019

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

b) Xét tứ giác A’BCD’ có BC//A’D’ và BC = A’D’

=> tứ giác A’BCD’ là hình bình hành

=> BA’ // CD’ ( tính chất của hình bình hành)

Tương tự, tứ giác ABC’D’ là hình bình hành nên BC’//AD’

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi O và O’ là tâm của ABCD và A’B’C’D’.

Gọi H và I lần lượt là tâm của hai tam giác đều BA’C’ và ACD’.

* Xét ( BB’D’D) có BO’// D’O nên OI // HB

Lại có: O là trung điểm BD

=> I là trung điểm của HD: IH = ID (1)

* Xét (BB’D’D) có D’O// BO’ nên D’I // HO’

Lại có: O’ là trung điểm của B’D’ nên H là trung điểm B’I: HI = HB’ (2)

Từ (1) và (2) suy ra: Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

* Theo phần trên B'D ⊥ (BA'C) ⇒ IH ⊥ (BA'C)

Mà I ∈ (ACD') nên khoảng cách giữa hai mp song song (ACD’) và ( BA’C’) là độ dài đoạn IH.

Khi đó:

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

 

Giải bài tập Toán 11 | Giải Toán lớp 11

30 tháng 4 2018

Chọn D

31 tháng 3 2017

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

b) Ta có ACC' là tam giác vuông có cạnh \(AC=a\sqrt{2},CC'=a\)

Vậy \(AC'^2=AC^2+CC^2\Rightarrow AC'^2=2a^2+a^2=3a^2\)

Vậy \(AC'=a\sqrt{3}\)

25 tháng 11 2018

ĐÁP ÁN: A

13 tháng 11 2018

Đáp án C

là hình chiếu của BD′ lên mặt phẳng (ADD'A)

Vì vậy