K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ giả thiết suy ra tứ giác ABCD là hình thoi, do đó AC ⊥ BD

Dễ thấy mặt chéo BDD'B' của hình hộp đã cho là hình bình hành, do đó BD // B′D′. Từ đó, theo bài 3.12 suy ra AC ⊥ B'D'.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

10 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết các mặt của hình hộp đều là hình thoi.

Ta có ABCD là hình thoi nên AC ⊥ BD

Theo tính chất của hình hộp: BD // B'D', do đó AC ⊥ B'D'.

Chứng minh tương tự ta được AB' ⊥ CD', AD' ⊥ CB'

Hai mặt phẳng (AA'C'C) và (BB'D'D) vuông góc với nhau khi hình hộp ABCD.A'B'C'D'là hình lập phương.

19 tháng 10 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trước hết dễ thấy tứ giác A'B'CD là hình bình hành, ngoài ra B′C = a = CD nên nó là hình thoi. Ta chứng minh hình thoi A'B'CD là hình vuông. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy tứ giác A’B’CD là hình vuông.

11 tháng 2 2023

loading...

Vậy tứ giác A’B’CD là hình vuông.

11 tháng 2 2023

copy ghi tham khảo vô bn nha!

https://cunghocvui.com/de-thi-kiem-tra/cau-hoi/97o2qxxg-cho-hinh-hop-thoi-abcd-a-b-c-d-co-tat-ca-cac-canh-bang-a-va-abc-b-ba-b-bc-60o-chung-minh-tu-giac-a-b-cd-la-hinh-vuong.html

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

31 tháng 3 2017

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

+) Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên tứ giác A'B'C'D'; ADD'A'; CC'D'D là hình thoi.

+) AB' // C'D và C'D \( \bot \) CD' nên AB' \( \bot \)CD'

+) AC // A'C' và A'C' \( \bot \) B'D' nên AC \( \bot \) B'D'

+) B'C // A'D và A'D \( \bot \) AD' nên B'C \( \bot \) AD'

Vậy ta đã chứng minh được rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.