K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔKMI và ΔKNH có

\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)

KM=KN

\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)

Do đó: ΔKMI=ΔKNH

=>KI=KH

=>K là trung điểm của HI

Xét tứ giác MINH có

K là trung điểm chung của MN và HI

nên MINH là hình bình hành

b: Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm chung của MP và NQ

Xét ΔNMP có

PK,NO là các đường trung tuyến

PK cắt NO tại H

Do đó: H là trọng tâm của ΔNMP

Xét ΔMNP có

PK là trung tuyến

H là trọng tâm

Do đó: \(PH=\dfrac{2}{3}PK\)

PH+HK=PK

=>\(HK+\dfrac{2}{3}PK=PK\)

=>\(HK=\dfrac{1}{3}PK\)

=>PH=2KH

mà KI=2KH(K là trung điểm của IH)

nên PH=HI

=>H là trung điểm của PI

c: Xét ΔMNP có

NO là đường trung tuyến

H là trọng tâm

Do đó: OH=1/3NO

=>OH=1/3QO

QO+OH=QH

=>\(\dfrac{1}{3}QO+QO=QH\)

=>\(QH=\dfrac{4}{3}QO\)

=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)

Xét ΔQHP có OF//HP

nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)

=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)

1 tháng 1 2024

giúp mik với ak

b: Xét hình thang MNPQ có EF//QP

nên ME/MQ=NF/NP(1)

Xét ΔMQP có EO//QP

nên EO/QP=ME/MQ(2)

Xét ΔNQP có OF//QP

nên OF/QP=NF/NP(3)

Từ (1), (2) và (3) suy ra OE/QP=OF/QP

hay OE=OF

Bài 2:

b: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

K là trung điểm của GB

I là trung điểm của GC

Do đó: KI là đường trung bình của ΔGBC

Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//KI và NM=KI

Xét tứ giác NMIK có 

NM//KI

NM=KI

Do đó: NMIK là hình bình hành

13 tháng 11 2020

tự kẻ hình nha

a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ

=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi

b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)

ta có PQ vuông góc với AB

AC vuông góc với AB

=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)

từ (1);(2)=> ACEQ là hbh

c) 1) trong tam giác ABC có 

MN //AC( N thuộc MP)

AM=MB

=> MN là đtb của tam giác => MN=AC/2=> AC=2MN

2) Vì AC=2MN=> AC=6cm

MN là đtb=> CN=BN 

tam giác ABC vuông tại A

=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

=> BC=2AN=10cm 

vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2

=> AB^2=100-36

=> AB=8 (AB>0)

=> chu vi tam giác ABC là 6+8+10=24(cm)

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành